14,935 research outputs found

    Are optically-selected QSO catalogs biased ?

    Get PDF
    A thorough study of QSO-galaxy correlations has been done on a region close to the North Galactic Pole using a complete subsample of the optically selected CFHT/MMT QSO survey and the galaxy catalog of Odewahn and Aldering (1995). Although a positive correlation between bright QSOs and galaxies is expected because of the magnification bias effect, none is detected. On the contrary, there is a significant (>99.6%) anticorrelation between z<1.6 QSOs and red galaxies on rather large angular distances. This anticorrelation is much less pronounced for high redshift z>1.6 QSOs, which seems to exclude dust as a cause of the QSO underdensity. This result suggests that the selection process employed in the CFHT/MMT QSO survey is losing up to 50% of low redshift z<1.6 QSOs in regions of high galaxy density. The incompleteness in the whole z<1.6 QSO sample may reach 10% and have important consequences in the estimation of QSO evolution and the QSO autocorrelation function.Comment: 17 pages LaTeX (aasms4), plus 6 EPS figures. To be published in the Astronomical Journa

    R-Band Imaging of Fields Around 1<z<2 Radiogalaxies

    Get PDF
    We have taken deep RR-band images of fields around five radiogalaxies: 0956+47, 1217+36, 3C256, 3C324 and 3C294 with 1<z<21<z<2 . 0956+47 is found to show a double nucleus. Our data on 1217+36 suggest the revision of its classification as a radiogalaxy. We found a statistically significant excess of bright (19.5<R<2219.5<R<22) galaxies on scales of 2 arcmin around the radiogalaxies (which have R≈21.4R \approx 21.4) in our sample. The excess has been determined empirically to be at ≳99.5%\gtrsim 99.5\% level. It is remarkable that this excess is not present for 22<R<23.7522<R<23.75 galaxies within the same area, suggesting that the excess is not physically associated to the galaxies but due to intervening groups and then related to gravitational lensing.Comment: 20 pages, uuencoded compressed PostScript including tables. Figures available upon request. To appear in the March 1995 issue of The Astronomical Journa

    Quasar-galaxy associations revisited

    Get PDF
    Gravitational lensing predicts an enhancement of the density of bright, distant QSOs around foreground galaxies. We measure this QSO-galaxy correlation w_qg for two complete samples of radio-loud quasars, the southern 1Jy and Half-Jansky samples. The existence of a positive correlation between z~1 quasars and z~0.15 galaxies is confirmed at a p=99.0% significance level (>99.9%) if previous measurements on the northern hemisphere are included). A comparison with the results obtained for incomplete quasar catalogs (e.g. the Veron-Cetty and Veron compilation) suggests the existence of an `identification bias', which spuriously increases the estimated amplitude of the quasar-galaxy correlation for incomplete samples. This effect may explain many of the surprisingly strong quasar-galaxy associations found in the literature. Nevertheless, the value of w_qg that we measure in our complete catalogs is still considerably higher than the predictions from weak lensing. We consider two effects which could help to explain this discrepancy: galactic dust extinction and strong lensing.Comment: 9 pages, 6 figures, MNRAS accepte

    A Cosmic Microwave Background feature consistent with a cosmic texture

    Full text link
    The Cosmic Microwave Background provides our most ancient image of the Universe and our best tool for studying its early evolution. Theories of high energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent, 5 degree radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry breaking energy scale to be phi_0 ~ 8.7 x 10^(15) GeV. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.Comment: Accepted by Science. Published electronically via Science Express on 25 October 2007, http://www.sciencemag.org/cgi/content/abstract/114869

    Detection of the ISW effect and corresponding dark energy constraints made with directional spherical wavelets

    Get PDF
    Using a directional spherical wavelet analysis we detect the integrated Sachs-Wolfe (ISW) effect, indicated by a positive correlation between the first-year Wilkinson Microwave Anisotropy Probe (WMAP) and NRAO VLA Sky Survey (NVSS) data. Detections are made using both a directional extension of the spherical Mexican hat wavelet and the spherical butterfly wavelet. We examine the possibility of foreground contamination and systematics in the WMAP data and conclude that these factors are not responsible for the signal that we detect. The wavelet analysis inherently enables us to localise on the sky those regions that contribute most strongly to the correlation. On removing these localised regions the correlation that we detect is reduced in significance, as expected, but it is not eliminated, suggesting that these regions are not the sole source of correlation between the data. This finding is consistent with predictions made using the ISW effect, where one would expect weak correlations over the entire sky. In a flat universe the detection of the ISW effect provides direct and independent evidence for dark energy. We use our detection to constrain dark energy parameters by deriving a theoretical prediction for the directional wavelet covariance statistic for a given cosmological model. Comparing these predictions with the data we place constraints on the equation-of-state parameter ww and the vacuum energy density ΩΛ\Omega_\Lambda. We also consider the case of a pure cosmological constant, i.e. w=−1w=-1. For this case we rule out a zero cosmological constant at greater than the 99.9% significance level. All parameter estimates that we obtain are consistent with the standand cosmological concordance model values.Comment: 16 pages, 13 figures; replaced to match version accepted by MNRA
    • 

    corecore