546 research outputs found
Nonequilibrium Kondo Effect in a Quantum Dot Coupled to Ferromagnetic Leads
We study the Kondo effect in the electron transport through a quantum dot
coupled to ferromagnetic leads, using a real-time diagrammatic technique which
provides a systematic description of the nonequilibrium dynamics of a system
with strong local electron correlations. We evaluate the theory in an extension
of the `resonant tunneling approximation', introduced earlier, by introducing
the self-energy of the off-diagonal component of the reduced propagator in spin
space. In this way we develop a charge and spin conserving approximation that
accounts not only for Kondo correlations but also for the spin splitting and
spin accumulation out of equilibrium. We show that the Kondo resonances, split
by the applied bias voltage, may be spin polarized. A left-right asymmetry in
the coupling strength and/or spin polarization of the electrodes significantly
affects both the spin accumulation and the weight of the split Kondo resonances
out of equilibrium. The effects are observable in the nonlinear differential
conductance. We also discuss the influence of decoherence on the Kondo
resonance in the frame of the real-time formulation.Comment: 13 pages, 13 figure
The Kondo effect in ferromagnetic atomic contacts
Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk,
electronic conduction in these materials takes place mainly through the and
electrons, whereas the magnetic moments are mostly in the narrow
-electron bands, where they tend to align. This general picture may change
at the nanoscale because electrons at the surfaces of materials experience
interactions that differ from those in the bulk. Here we show direct evidence
for such changes: electronic transport in atomic-scale contacts of pure
ferromagnets (iron, cobalt and nickel), despite their strong bulk
ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of
local magnetic moments by the conduction electrons below a characteristic
temperature. The Kondo effect creates a sharp resonance at the Fermi energy,
affecting the electrical properties of the system;this appears as a Fano-Kondo
resonance in the conductance characteristics as observed in other artificial
nanostructures. The study of hundreds of contacts shows material-dependent
lognormal distributions of the resonance width that arise naturally from Kondo
theory. These resonances broaden and disappear with increasing temperature,
also as in standard Kondo systems. Our observations, supported by calculations,
imply that coordination changes can significantly modify magnetism at the
nanoscale. Therefore, in addition to standard micromagnetic physics, strong
electronic correlations along with atomic-scale geometry need to be considered
when investigating the magnetic properties of magnetic nanostructures.Comment: 7 pages, 5 figure
Giant fluctuations of superconducting order parameter in Ferromagnet/superconductor single electron transistors
Spin dependent transport in a ferromagnet/superconductor/ferromagnet single
electron transistor is studied theoretically with spin accumulation, spin
relaxation, gap suppression, and charging effects taken into account. A strong
dependence of the gap on the magnetic state of the outer electrodes is found,
which gives rise to a negative magneto-resistance of up to 100 %. We predict
that fluctuations of the spin accumulation due to tunneling of quasi-particles
can play such an important role as to cause the island to fluctuate between the
superconductin
Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets
We study the Kondo effect in a quantum dot coupled to half-metallic
ferromagnetic electrodes in the regime of strong on-dot correlations. Using the
equation of motion technique for nonequilibrium Green functions in the slave
boson representation we show that the Kondo effect is not completely suppressed
for anti-parallel leads magnetization. In the parallel configuration there is
no Kondo effect but there is an effect associated with elastic cotunneling
which in turn leads to similar behavior of the local (on-dot) density of states
(LDOS) as the usual Kondo effect. Namely, the LDOS shows the temperature
dependent resonance at the Fermi energy which splits with the bias voltage and
the magnetic field. Moreover, unlike for non-magnetic or not fully polarized
ferromagnetic leads the only minority spin electrons can form such resonance in
the density of states. However, this resonance cannot be observed directly in
the transport measurements and we give some clues how to identify the effect in
such systems.Comment: 15 pages, 8 figures, accepted for publication in J. Phys.: Condens.
Mat
Crossover from Kondo assisted suppression to co-tunneling enhancement of tunneling magnetoresistance via ferromagnetic nanodots in MgO tunnel barriers
Recently, it has been shown that magnetic tunnel junctions with thin MgO
tunnel barriers exhibit extraordinarily high tunneling magnetoresistance (TMR)
values at room temperature1, 2. However, the physics of spin dependent
tunneling through MgO barriers is only beginning to be unravelled. Using planar
magnetic tunnel junctions in which ultra-thin layers of magnetic metals are
deposited in the middle of a MgO tunnel barrier here we demonstrate that the
TMR is strongly modified when these layers are discontinuous and composed of
small pancake shaped nanodots. At low temperatures, in the Coulomb blockade
regime, for layers less than ~1 nm thick, the conductance of the junction is
increased at low bias consistent with Kondo assisted tunneling. In the same
regime we observe a suppression of the TMR. For slightly thicker layers, and
correspondingly larger nanodots, the TMR is enhanced at low bias, consistent
with co-tunneling.Comment: Nano Letters (in press
Effect of oxygen fugacity on the storage of water in wadsleyite and olivine in H and H–C fluids and implications for melting atop the transition zone
This study aims to experimentally constrain the water storage capacities of
olivine and wadsleyite at a depth near 410 km (12–14 GPa) under
water-saturated conditions, as a function of temperature, oxygen fugacity,
and the presence of carbon (molar H / C of 2). Experiments have been conducted
in the multi-anvil press, with sealed double capsules to preserve fluids, at
1200 to 1400 ∘C and three different oxygen fugacities fixed at the
rhenium–rhenium oxide buffer (RRO), nickel–nickel oxide buffer (NNO), and
iron-wüstite (IW) for oxidizing, intermediate, and reducing conditions,
respectively. The water contents of minerals were measured by Raman
spectroscopy that allows a very small beam size to be used and were
cross-checked on a few samples with NanoSIMS analyses.
We observe an effect, although slight, of fO2 on the water storage
capacity of both wadsleyite and olivine and also on their solidus
temperatures. At 1200 ∘C, the storage capacity of the nominally anhydrous
minerals (NAMS)
increases with increasing oxygen fugacity (from the IW to the RRO buffer)
from 1 wt % to 1.5 wt % H2O in wadsleyite and from 0.1 wt % to 0.2 wt % in olivine, owing to the increase in H2O / H2 speciation in
the fluid, whereas at 1400 ∘C the storage capacity decreases from
1 wt % to 0.75 wt % H2O in wadsleyite and down to 0.03 wt % for
olivine. At high temperature, the water storage capacity is lowered due to
melting, and the more oxidized the conditions are the more the solidus is
depressed. Still, at 1400 ∘C and IW, wadsleyite can store
substantial amounts of water: 0.8 wt % to 1 wt % H2O. The effect of carbon is
to decrease water storage capacity in both wadsleyite and olivine by an
average factor 2 at 1300–1400 ∘C. The trends in water storage as a
function of fO2 and C presence are confirmed by NanoSIMS measurements.
The solidus at IW without C is located between 1300 and 1400 ∘C in
the wadsleyite stability field and drops to temperatures below 1300 ∘C in the olivine stability field. With the addition of C, the
solidus is found between 1200 and 1300 ∘C in both olivine and
wadsleyite stability fields.</p
Study on early inflorescence development in bread wheat (T. aestivum L.) lines with non-standard SCR-morphotype
Features of wheat (Triticum aestivum L.) inflorescence development define its architecture and have an impact on yield potential. Wheat lines and forms with altered inflorescence morphology are important genetic resources for the study on the genetic mechanisms underlying plant developmental programs and inflorescence architecture; they are also important for practical use to increase productivity. Normally, wheat spikelets are arranged in two parallel rows along the spike axis. The SCR (screwed spike rachis) lines represent a non-standard morphotype, which is characterized by a spiral arrangement of spikelets along the spiked rachis. The study of the early stages of the inflorescence development in SCR-lines using light and scanning electron microscopy revealed that the spiral arrangement of spikelets were not related to changes at the early stage of inflorescence development, and resulted from spiral growth of spike rachis cells at later stages of spike growth. Thus, the spiral arrangement of spikelets in cereal inflorescence may have resulted not only from peculiarities of the mutual arrangement of spikelet meristems (phyllotaxis), but also from cell growth features at later stages of inflorescence growth. It was shown that SCR is inherited as a dominant monogenic trait; its expression can be modified by genotypic background. The SCR-lines characterized using light and scanning electron microscopy represent an important genetic resource for further study of the molecular-genetic mechanisms determining plant architecture. Furthermore, they can be used to develop wheat lines and cultivars with new inflorescence phenotypes
Spintronic transport and Kondo effect in quantum dots
We investigate the spin-dependent transport properties of quantum-dot based
structures where Kondo correlations dominate the electronic dynamics. The
coupling to ferromagnetic leads with parallel magnetizations is known to give
rise to nontrivial effects in the local density of states of a single quantum
dot. We show that this influence strongly depends on whether charge
fluctuations are present or absent in the dot. This result is confirmed with
numerical renormalization group calculations and perturbation theory in the
on-site interaction. In the Fermi-liquid fixed point, we determine the
correlations of the electric current at zero temperature (shot noise) and
demonstrate that the Fano factor is suppressed below the Poissonian limit for
the symmetric point of the Anderson Hamiltonian even for nonzero lead
magnetizations. We discuss possible avenues of future research in this field:
coupling to the low energy excitations of the ferromagnets (magnons), extension
to double quantum dot systems with interdot antiferromagnetic interaction and
effect of spin-polarized currents on higher symmetry Kondo states such as
SU(4).Comment: 11 pages, 5 figures. Proceedings of the 3rd Intl. Conf. on Physics
and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara,
200
Spin-Polarized Transprot through Double Quantum Dots
We investigate spin-polarized transport phenomena through double quantum dots
coupled to ferromagnetic leads in series. By means of the slave-boson
mean-field approximation, we calculate the conductance in the Kondo regime for
two different configurations of the leads: spin-polarization of two
ferromagnetic leads is parallel or anti-parallel. It is found that transport
shows some remarkable properties depending on the tunneling strength between
two dots. These properties are explained in terms of the Kondo resonances in
the local density of states.Comment: 8 pages, 11 figure
- …