64 research outputs found
Genomic analysis reveals neutral and adaptive patterns that challenge the current management regime for East Atlantic cod Gadus morhua L
Challenging longâheld perceptions of fish management units can help to protect vulnerable stocks. When a fishery consisting of multiple genetic stocks is managed as a single unit, overexploitation and depletion of minor genetic units can occur. Atlantic cod (Gadus morhua) is an economically and ecologically important marine species across the North Atlantic. The application of new genomic resources, including SNP arrays, allows us to detect and explore novel structure within specific cod management units. In Norwegian waters, coastal cod (i.e. those not undertaking extensive migrations) are divided into two arbitrary management units defined by ICES: one between 62° and 70°N (Norwegian coastal cod; NCC) and one between 58° and 62°N (Norwegian coastal south; NCS). Together, these capture a fishery area of >25,000 km2 containing many spawning grounds. To assess whether these geographic units correctly represent genetic stocks, we analysed spawning cod of NCC and NCS for more than 8,000 SNPs along with samples of Russian White Sea cod, northâeast Arctic cod (NEAC: the largest Atlantic stock), and outgroup samples representing the Irish and Faroe Sea's. Our analyses revealed large differences in spatial patterns of genetic differentiation across the genome and revealed a complex biological structure within NCC and NCS. Haplotype maps from four chromosome sets show regional specific SNP indicating a complex genetic structure. The current management plan dividing the coastal cod into only two management units does not accurately reflect the genetic units and needs to be revised. Coastal cod in Norway, while highly heterogenous, is also genetically distinct from neighbouring stocks in the north (NEAC), west (Faroe Island) and the south. The White Sea cod are highly divergent from other cod, possibly yielding support to the earlier notion of subspecies rank.publishedVersio
Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish
Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio
Management and conservation implications of cryptic population substructure for two commercially exploited fishes (Merluccius spp.) in southern Africa
DATA AVAILABILITY STATEMENT : The code used in this manuscript is supplied as Data S1. Genomic data (raw reads) as well as filtered sync files are available in DRYAD (https://doi.org/10.5061/dryad.sn02v6x8n).Genomic information can aid in the establishment of sustainable management plans for commercially exploited marine fishes, aiding in the long-term conservation of these resources. The southern African hakes (Merluccius capensis and M.âparadoxus) are commercially valuable demersal fishes with similar distribution ranges but exhibiting contrasting life histories. Using a comparative framework based on Pool-Seq genome-wide SNP data, we investigated whether the evolutionary processes that shaped extant patterns of diversity and divergence are shared among these two congeneric fishes, or unique to each one. Our findings revealed that M.âcapensis and M.âparadoxus show similar levels of genome-wide diversity, despite different census sizes and life-history features. In addition, M.âcapensis shows three highly structured geographic populations across the Benguela Current region (one in the northern Benguela and two in the southern Benguela), with no consistent genomeâenvironment associations detected. In contrast, although population structure and outlier analyses suggested panmixia for M.âparadoxus, reconstruction of its demographic history suggested the presence of an AtlanticâIndian Ocean subtle substructuring pattern. Therefore, it appears that M.âparadoxus might be composed by two highly connected populations, one in the Atlantic and one in the southwest Indian Ocean. The reported similar low levels of genomic diversity, as well as newly discovered genetically distinct populations in both hake species can thus assist in informing and improving conservation and management plans for the commercially important southern African Merluccius.The Directorate-General for Development and Cooperation - EuropeAid and the National Research Foundation. Grant Number: 105949http://www.wileyonlinelibrary.com/journal/menhj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-14:Life below wate
Purification of Reversibly Oxidized Proteins (PROP) Reveals a Redox Switch Controlling p38 MAP Kinase Activity
Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity
Salient Pixels and Dimensionality Reduction for Display of Multi/Hyperspectral Images
International audienceDimensionality Reduction (DR) of spectral images is a common approach to different purposes such as visualization, noise removal or compression. Most methods such as PCA or band selection use either the entire population of pixels or a uniformly sampled subset in order to compute a projection matrix. By doing so, spatial information is not accurately handled and all the objects contained in the scene are given the same emphasis. Nonetheless, it is possible to focus the DR on the separation of specific Objects of Interest (OoI), simply by neglecting all the others. In PCA for instance, instead of using the variance of the scene in each spectral channel, we show that it is more efficient to consider the variance of a small group of pixels representing several OoI, which must be separated by the projection. We propose an efficient method based on saliency to automatically identify OoI and extract only a few relevant pixels to enhance the separation foreground/background in the DR process
Speciation in marine environments: Diving under the surface
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using modelâbased approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity
- âŠ