175 research outputs found

    Evaluation of the analytical potential of auger electron spectrometry in atmospheric analyses

    Get PDF
    The scope of this study into the analytical potential of gas phase Auger electron spectrometry (AES) is defined, and its relation to the work previously conducted at the University of Technology, Loughborough on this topic is shown. The vacuum generators AFM2 gas phase Auger electron spectrometer is described in detail, this includes a discussion of maintenance and fault-finding. Detailed operating instructions based on the manufacturer's manual and the author's experience, are included. The theoretical and experimental aspects of the operational parameters of the electron gun, analyser, detector, sample introduction system, and the recording system are given. The choice of parameter values for the optimal performance of the instrument are discussed. [Abstract.

    Strong quantitative benchmarking of quantum optical devices

    Full text link
    Quantum communication devices, such as quantum repeaters, quantum memories, or quantum channels, are unavoidably exposed to imperfections. However, the presence of imperfections can be tolerated, as long as we can verify such devices retain their quantum advantages. Benchmarks based on witnessing entanglement have proven useful for verifying the true quantum nature of these devices. The next challenge is to characterize how strongly a device is within the quantum domain. We present a method, based on entanglement measures and rigorous state truncation, which allows us to characterize the degree of quantumness of optical devices. This method serves as a quantitative extension to a large class of previously-known quantum benchmarks, requiring no additional information beyond what is already used for the non-quantitative benchmarks.Comment: 11 pages, 7 figures. Comments are welcome. ver 2: Improved figures, no changes to main tex

    Coherent control of quantum systems as a resource theory

    Full text link
    Control at the interface between the classical and the quantum world is fundamental in quantum physics. In particular, how classical control is enhanced by coherence effects is an important question both from a theoretical as well as from a technological point of view. In this work, we establish a resource theory describing this setting and explore relations to the theory of coherence, entanglement and information processing. Specifically, for the coherent control of quantum systems the relevant resources of entanglement and coherence are found to be equivalent and closely related to a measure of discord. The results are then applied to the DQC1 protocol and the precision of the final measurement is expressed in terms of the available resources.Comment: 9 pages, 4 figures, final version. Discussions were improved and some points were clarified. The title was slightly changed to agree with the published versio

    Estimating the gradient and higher-order derivatives on quantum hardware

    Get PDF
    For a large class of variational quantum circuits, we show how arbitrary-order derivatives can be analytically evaluated in terms of simple parameter-shift rules, i.e., by running the same circuit with different shifts of the parameters. As particular cases, we obtain parameter-shift rules for the Hessian of an expectation value and for the metric tensor of a variational state, both of which can be efficiently used to analytically implement second-order optimization algorithms on a quantum computer. We also consider the impact of statistical noise by studying the mean-square error of different derivative estimators. Some of the theoretical techniques for evaluating quantum derivatives are applied to their typical use case: the implementation of quantum optimizers. We find that the performance of different estimators and optimizers is intertwined with the values of different hyperparameters, such as the step size or the number of shots. Our findings are supported by several numerical and hardware experiments, including an experimental estimation of the Hessian of a simple variational circuit and an implementation of the Newton optimizer

    Transfer learning in hybrid classical-quantum neural networks

    Get PDF
    We extend the concept of transfer learning, widely applied in modern machine learning algorithms, to the emerging context of hybrid neural networks composed of classical and quantum elements. We propose different implementations of hybrid transfer learning, but we focus mainly on the paradigm in which a pre-trained classical network is modified and augmented by a final variational quantum circuit. This approach is particularly attractive in the current era of intermediate-scale quantum technology since it allows to optimally pre-process high dimensional data (e.g., images) with any state-of-the-art classical network and to embed a select set of highly informative features into a quantum processor. We present several proof-of-concept examples of the convenient application of quantum transfer learning for image recognition and quantum state classification. We use the crossplatform software library PennyLane to experimentally test a high-resolution image classifier with two different quantum computers, respectively provided by IBM and Rigetti

    Quantum benchmarking with realistic states of light

    Full text link
    The goal of quantum benchmarking is to certify that imperfect quantum communication devices (e.g., quantum channels, quantum memories, quantum key distribution systems) can still be used for meaningful quantum communication. However, the test states used in quantum benchmarking experiments may be imperfect as well. Many quantum benchmarks are only valid for states which match some ideal form, such as pure states or Gaussian states. We outline how to perform quantum benchmarking using arbitrary states of light. We demonstrate these results using real data taken from a continuous-variable quantum memory.Comment: 14 pages, 3 figures. Updated to more closely match the published versio

    Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and inseparability of two-mode Gaussian states

    Full text link
    The strange property of the Einstein-Podolsky-Rosen (EPR) correlation between two remote physical systems is a primitive object on the study of quantum entanglement. In order to understand the entanglement in canonical continuous-variable systems, a pair of the EPR-like uncertainties is an essential tool. Here, we consider a normalized pair of the EPR-like uncertainties and introduce a state-overlap to a classically correlated mixture of coherent states. The separable condition associated with this state-overlap determines the strength of the EPR-like correlation on a coherent-state basis in order that the state is entangled. We show that the coherent-state-based condition is capable of detecting the class of two-mode Gaussian entangled states. We also present an experimental measurement scheme for estimation of the state-overlap by a heterodyne measurement and a photon detection with a feedforward operation.Comment: 9 pages, 5 figures. A part of the materials in Sec. VI B of previous versions was moved into another paper: Journal of Atomic, Molecular, and Optical Physics, 2012, 854693 (2012). http://www.hindawi.com/journals/jamop/2012/854693
    corecore