5,493 research outputs found

    Perturbation Theory for Singular Potentials in Quantum Mechanics

    Get PDF
    We study perturbation theory in certain quantum mechanics problems in which the perturbing potential diverges at some points, even though the energy eigenvalues are smooth functions of the coefficient of the potential. We discuss some of the unusual techniques which are required to obtain perturbative expansions of the energies in such cases. These include a point-splitting prescription for expansions around the Dirichlet (fermionic) limit of the δ\delta-function potential, and performing a similarity transformation to a non-Hermitian potential in the Calogero-Sutherland model. As an application of the first technique, we study the ground state of the δ\delta-function Bose gas near the fermionic limit.Comment: LaTeX, 19 pages, no figure

    Quark mass and condensate in HQCD

    Full text link
    We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory. We show that this field is responsible both for the spontaneous breaking of the chiral symmetry, and for the generation of (current algebra) quark masses, from the point of view of the bulk theory. As a by-product we show how this leads to the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5), (4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the pion mass rewritten in a clearer way, version published in JHE

    Momentum modes of M5-branes in a 2d space

    Get PDF
    We study M5 branes by considering the selfdual strings parallel to a plane. With the internal oscillation frozen, each selfdual string gives a 5d SYM field. All selfdual strings together give a 6d field with 5 scalars, 3 gauge degrees of freedom and 8 fermionic degrees of freedom in adjoint representation of U(N). Selfdual strings with the same orientation have the SYM-type interaction. For selfdual strings with the different orientations, which could also be taken as the unparallel momentum modes of the 6d field on that plane or the (p,q) (r,s) strings on D3 with (p,q)\neq (r,s), the [i,j]+[j,k]\rightarrow [i,k] relation is not valid, so the coupling cannot be written in terms of the standard N \times N matrix multiplication. 3-string junction, which is the bound state of the unparallel [i,j] [j,k] selfdual strings, may play a role here.Comment: 37 pages, 5 figures, to appear in JHEP; v2: reference adde

    Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe

    Full text link
    Chiral magnetic interactions induce complex spin textures including helical and conical spin waves, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyze the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry, and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides new insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses novel challenges regarding their technological usage

    Quantum 1/4 BPS Dyons

    Get PDF
    Classical properties of 1/4 BPS dyons were previously well understood both in field theory context and in string theory context. Its quantum properties, however, have been more difficult to probe, although the elementary information of the supermultiplet structures is known from a perturbative construction. Recently, a low energy effective theory of monopoles was constructed and argued to contain these dyons as quantum bound states. In this paper, we find these dyonic bound states explicitly in the N=4 supersymmetric low energy effective theory. After identifying the correct angular momentum operators, we motivate an anti-self-dual ansatz for all BPS bound states. The wavefunctions are found explicitly, whose spin contents and degeneracies match exactly the expected results.Comment: 20 pages, no figure

    Exactly stable non-BPS spinors in heterotic string theory on tori

    Full text link
    Considering SO(32) heterotic string theory compactified on a torus of dimension 4 and less, stability of non-supersymmetric states is studied. A non-supersymmetric state with robust stability is constructed, and its exact stability is proven in a large region of moduli space against all the possible decay mechanisms allowed by charge conservation. Using various T-duality transform matrices, we translate various selection rules about conserved charges into simpler problems resembling partition and parity of integers. For heterotic string on T^4, we give a complete list of BPS atoms with elementary excitations, and we study BPS and non-BPS molecules with various binding energies. Using string-string duality, the results are interpreted in terms of Dirichlet-branes in type IIA string theory compactified on an orbifold limit of a K3 surface.Comment: 47 pages, 14 figures, LaTe

    The nonperturbative closed string tachyon vacuum to high level

    Full text link
    We compute the action of closed bosonic string field theory at quartic order with fields up to level ten. After level four, the value of the potential at the minimum starts oscillating around a nonzero negative value, in contrast with the proposition made in [5]. We try a different truncation scheme in which the value of the potential converges faster with the level. By extrapolating these values, we are able to give a rather precise value for the depth of the potential.Comment: 24 pages. v2: typos corrected, clarified extrapolation in scheme B, and added extrapolated tachyon and dilaton vev's at the end of Section

    Holographic DC conductivities from the open string metric

    Full text link
    We study the DC conductivities of various holographic models using the open string metric (OSM), which is an effective metric geometrizing density and electromagnetic field effect. We propose a new way to compute the nonlinear conductivity using OSM. As far as the final conductivity formula is concerned, it is equivalent to the Karch-O'Bannon's real-action method. However, it yields a geometrical insight and technical simplifications. Especially, a real-action condition is interpreted as a regular geometry condition of OSM. As applications of the OSM method, we study several holographic models on the quantum Hall effect and strange metal. By comparing a Lifshitz background and the Light-Cone AdS, we show how an extra parameter can change the temperature scaling behavior of conductivity. Finally we discuss how OSM can be used to study other transport coefficients, such as diffusion constant, and effective temperature induced by the effective world volume horizon.Comment: 33 page

    D-brane interactions in type IIB plane-wave background

    Full text link
    The cylinder diagrams that determine the static interactions between pairs of Dp-branes in the type IIB plane wave background are evaluated. The resulting expressions are elegant generalizations of the flat-space formulae that depend on the value of the Ramond-Ramond flux of the background in a non-trivial manner. The closed-string and open-string descriptions consistently transform into each other under a modular transformation only when each of the interacting D-branes separately preserves half the supersymmetries. These results are derived for configurations of euclidean signature D(p+1)-instantons but also generalize to lorentzian signature Dp-branes.Comment: 24 pages, Normalisation of boundary states correcte

    Clear-cuts are temporary habitats, not matrix, for endangered grassland burnet moths (Zygaena spp.)

    Get PDF
    Burnet moths (Zygaena spp.) are day-flying Lepidoptera considered indicative of species-rich grasslands. In the present study, our aim was to clarify whether clear-cuts are habitat, supporting habitat or matrix for three species of Zygaena. We did so by sampling these species with sex pheromones on 48 clear-cuts, varying in amount of host and nectar plants, in southern Sweden. To compare the efficiency of such sampling, we also conducted transect walks on these clearcuts. Overall, host-plants on clear-cuts best explained the abundance of Zygaena spp. recorded, better than nectar-plants or connectivity with nearby grasslands. These results indicate that clear-cuts with an abundance of host plants are used as a fully functional habitat, and not a supporting habitat in the sense of only providing nectar. There is no support in these results for considering clear-cuts as an inert matrix. With about half the work-effort, pheromone traps recorded 100 times more Zygaena spp. as transect walks. The poor correspondence between observations during transects walks and pheromone trap catches suggest Zygaena spp. being difficult to monitor by transect walks. In contrast to grasslands, clear-cuts are short-term in nature requiring repeated recolonization, indicating the importance of permanent grasslands. However, clear-cuts are important temporary insect habitats due to their great acreage, and suitable management can increase the time they remain a habitat
    corecore