29 research outputs found
Habitat selection and population regulation in temporally fluctuating environments
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics
Constrained growth flips the direction of optimal phenological responses among annual plants
Phenological changes among plants due to climate change are well documented, but often hard to interpet. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition.
We derive the optimal flowering time from a dynamic energy allocation model using optimal control theroy. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality.
Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrined growth and delayed under unconstrained growth.
Our results suggests that growth constraints are key factors to consider when interpreting phenologicl flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory
Leptin Affects Life History Decisions in a Passerine Bird: A Field Experiment
BACKGROUND: Organisms face trade-offs regarding their life-history strategies, such as decisions of single or multiple broods within a year. In passerines displaying facultative multiple breeding, the probability of laying a second clutch is influenced by several life-history factors. However, information about the mechanistic background of these trade-offs is largely lacking. Leptin is a protein hormone produced by white fat cells, and acts as a signal between peripheral energy depots and the central nervous system. In addition, leptin affects cells at all levels of the reproductive axis and plays a critical role in regulating the allocation of metabolic energy to reproduction. As such, it is possible that leptin levels influence the decision of whether or not to invest time and energy into a second clutch. Accordingly, we expect a treatment with exogenous leptin to result in an increased number of second broods. METHODOLOGY/PRINCIPAL FINDINGS: At a later stage during the first brood, female great tits were treated either with long-term leptin-filled cholesterol pellets (the experimental birds) or with pellets containing only cholesterol (the control birds). We found that leptin-treated females were significantly more likely to have a second brood and that the earlier females were more likely to lay a second clutch than the late females. CONCLUSIONS/SIGNIFICANCE: As both timing of first brood and treatment with leptin were important in the decision of having multiple broods, the trade-offs involved in the breeding strategy most likely depend on multiple factors. Presumably leptin has evolved as a signal of energy supply status to regulate the release of reproductive hormones so that reproduction is coordinated with periods of sufficient nutrients. This study investigated the role of leptin as a mediator between energy resources and reproductive output, providing a fundamentally new insight into how trade-offs work on a functional basis
Avian movements in a modern world - cognitive challenges
Different movement patterns have evolved as a response to predictable and unpredictable variation in the environment with migration being an adaptation to predictable environments, nomadism to unpredictable environments and partial migration to a mixture of predictable and unpredictable conditions. Along different movement patterns different cognitive abilities have evolved which are reviewed and discussed in relation to an organism’s ability to respond to largely unpredictable environmental change due to climate and human-induced change and linked to population trends. In brief, migrants have a combination of reliance on memory, low propensity to explore and high avoidance of environmental change that in combination with overall small brain sizes results in low flexibility to respond to unpredictable environmental change. In line with this, many migrants have negative population trends. In contrast, while nomads may use their memory to find suitable habitats they can counteract negative effects of finding such habitats disturbed by large-scale exploratory movements and paying attention to environmental cues. They are also little avoidant of environmental change. Population trends are largely stable or increasing indicating their ability to cope with climate and human-induced change. Cognitive abilities in partial migrants are little investigated but indicate attention to environmental cues coupled with high exploratory tendencies that allow them a flexible response to unpredictable environmental change. Indeed, their population trends are mainly stable or increasing. In conclusion, cognitive abilities have evolved in conjunction with different movement patterns and affect an organism’s ability to adapt to rapidly human-induced changes in the environment
Recommended from our members
Spent fuel reprocessing system availability definition by process simulation
To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported
Stochastic demography and population dynamics in the red kangaroo Macropus rufus
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity.
2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates.
3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate.
4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates.
5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate
Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?
Extrinsic mortality impinging on negative density-dependent populations can result in no change in the number of survivors (compensation) or an increase (overcompensation) by releasing the population from density-dependent effects on survivorship. The relationship between the level of extrinsic mortality (i.e., percentage of mortality) and the level and likelihood of overcompensation is theoretically important, but rarely investigated. We tested the hypothesis that overcompensation occurs below a threshold value of extrinsic mortality that is related to density-dependent mortality rate and that additive extrinsic mortality occurs above this threshold. This hypothesis predicts that survivorship vs. extrinsic mortality will (1) be best described by a two-segmented model with a threshold; (2) have a slope \u3e0 below the threshold; and (3) have a slope = −1 above the threshold. We also tested whether mortality imposed by real predators and random harvest have equivalent effects on adult production and whether magnitude of overcompensation is related to species sensitivity to density dependence. These hypotheses were tested in the container mosquitoes Aedes aegypti, Aedes albopictus, Aedes triseriatus, and Culex pipiens (Diptera: Culicidae). Cohorts of 150 larvae were exposed to random harvest of 0–70% two days after hatch or to predation by 1–3 Mesocyclops longisetus (Crustacea: Copepoda). Overcompensation occurred in A. aegypti in a pattern consistent with predictions. Aedes triseriatus showed strong overcompensation but no evidence of a threshold, whereas A. albopictus and C. pipiens had survival consistent with compensatory mortality but no evidence of a threshold. Compared to random harvest, mortality from predation yielded greater adult production in A. aegypti and A. albopictus, lesser adult production in C. pipiens, and no difference in adult production in A. triseriatus. Our results are largely consistent with our hypothesis about overcompensation, with the caveat that thresholds for additive mortality appear to occur at very high levels of extrinsic mortality. Magnitudes of overcompensation for the three Aedes were inversely related to survival in the 0% mortality treatment, consistent with our hypothesis that overcompensation is related to sensitivity to density dependence. A broad range of extrinsic mortality levels can yield overcompensation, which may have practical implications for attempts to control pest populations