49 research outputs found

    FAUST I. The hot corino at the heart of the prototypical Class I protostar L1551 IRS5

    Get PDF
    The study of hot corinos in Solar-like protostars has been so far mostly limited to the Class 0 phase, hampering our understanding of their origin and evolution. In addition, recent evidence suggests that planet formation starts already during Class I phase, which, therefore, represents a crucial step in the future planetary system chemical composition. Hence, the study of hot corinos in Class I protostars has become of paramount importance. Here we report the discovery of a hot corino towards the prototypical Class I protostar L1551 IRS5, obtained within the ALMA Large Program FAUST. We detected several lines from methanol and its isopotologues (13^{13}CH3_{\rm 3}OH and CH2_{\rm 2}DOH), methyl formate and ethanol. Lines are bright toward the north component of the IRS5 binary system, and a possible second hot corino may be associated with the south component. The methanol lines non-LTE analysis constrains the gas temperature (\sim100 K), density (\geq1.5×\times108^{8} cm3^{-3}), and emitting size (\sim10 au in radius). All CH3_{\rm 3}OH and 13^{13}CH3_{\rm 3}OH lines are optically thick, preventing a reliable measure of the deuteration. The methyl formate and ethanol relative abundances are compatible with those measured in Class 0 hot corinos. Thus, based on the present work, little chemical evolution from Class 0 to I hot corinos occurs.Comment: 6 pages, 2 figure

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ\gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ\gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ\gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2z=2 and to constrain or detect γ\gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ\gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ\gamma-ray cosmology

    Seeds of Life in Space (SOLIS): VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC 1333-IRAS4A

    Get PDF
    Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC 1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC 1333-IRAS4A in the 1.3, 2, and 3 mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east-south west direction. SO is detected at extremely high radial velocity up to + 25 km s-1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm-3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2. © ESO 2020.V.T. is grateful to Sylvie Cabrit and Guillaume Pineau des Forêts for stimulating discussions on the chemistry in shocks. The authors acknowledge the CALYPSO consortium for the use of the CALYPSO dataset. This work is based on observations carried out with the IRAM PdBI/NOEMA Interferometer under project numbers V05B and V010 (PI: M.V. Persson), U003 (PI: V. Taquet), and L15AA (PI: C. Ceccarelli and P. Caselli). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). V.T. acknowledges the financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 664931. This work was supported by (i) the PRIN-INAF 2016 “The Cradle of Life – GENESIS-SKA (General Conditions in Early Planetary Systems for the rise of life with SKA)”, (ii) the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, for the Project “The Dawn of Organic Chemistry” (DOC), grant agreement No 741002, and (iii) the European MARIE SKŁODOWSKA-CURIE ACTIONS under the European Union’s Horizon 2020 research and innovation programme, for the Project “Astro-Chemistry Origins” (ACO), Grant No 811312. C.F. acknowledges support from the French National Research Agency in the framework of the Investissements d’Avenir program (ANR-15-IDEX-02), through the funding of the “Origin of Life” project of the Université Grenoble-Alpes

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Full text link
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy γ\gamma-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a γ\gamma-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with O(100)\mathcal{O}(100) hours of exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle Physic

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.</p

    Expression and immunoreactivities of Hepatitis E virus genotype 3 open reading frame-2 (ORF-2) recombinant proteins expressed in insect cells

    No full text
    Hepatitis E virus (HEV) is a fecal-orally transmitted virus that is endemic in many geographical areas with poor sanitary conditions and inadequate water supplies. In Europe, a low-endemic area, an increased number of autochthonous sporadic human cases of patients infected with HEV strains of genotype 3, have been reported lately. The relatively high prevalence of HEV genotype 3 infections in European pigs has raised concerns about a potential zoonotic transmission to humans. Determination of HEV seroprevalence in pigs would help to clarify its incidence and possible zoonotic implications. To this purpose, we have expressed and partially characterized swine genotype 3 HEV open reading frame-2 proteins upon infection of Sf21 insect cells with recombinant baculoviruses. The use of the expressed proteins as diagnostic antigens for the detection of antibodies to HEV has been further assayed with human and swine sera. © Springer Science+Business Media, LLC 2009

    SOLIS: XVI. Mass ejection and time variability in protostellar outflows: Cep E

    Get PDF
    International audienceContext. Protostellar jets are an important agent of star formation feedback, tightly connected with the mass-accretion process. The history of jet formation and mass ejection provides constraints on the mass accretion history and on the nature of the driving source.Aims. We characterize the time-variability of the mass-ejection phenomena at work in the class 0 protostellar phase in order to better understand the dynamics of the outflowing gas and bring more constraints on the origin of the jet chemical composition and the mass-accretion history.Methods. Using the NOrthern Extended Millimeter Array (NOEMA) interferometer, we have observed the emission of the CO 2–1 and SO NJ = 54–43 rotational transitions at an angular resolution of 1.0″ (820 au) and 0.4″ (330 au), respectively, toward the intermediate-mass class 0 protostellar system Cep E.Results. The CO high-velocity jet emission reveals a central component of ≤400 au diameter associated with high-velocity molecular knots that is also detected in SO, surrounded by a collimated layer of entrained gas. The gas layer appears to be accelerated along the main axis over a length scale δ0 ~ 700 au, while its diameter gradually increases up to several 1000 au at 2000 au from the protostar. The jet is fragmented into 18 knots of mass ~10−3 M⊙, unevenly distributed between the northern and southern lobes, with velocity variations up to 15 km s−1 close to the protostar. This is well below the jet terminal velocities in the northern (+ 65 km s−1) and southern (−125 km s−1) lobes. The knot interval distribution is approximately bimodal on a timescale of ~50–80 yr, which is close to the jet-driving protostar Cep E-A and ~150–20 yr at larger distances >12″. The mass-loss rates derived from knot masses are steady overall, with values of 2.7 × 10−5 M⊙ yr−1 and 8.9 × 10−6 M⊙ yr−1 in the northern and southern lobe, respectively.Conclusions. The interaction of the ambient protostellar material with high-velocity knots drives the formation of a molecular layer around the jet. This accounts for the higher mass-loss rate in the northern lobe. The jet dynamics are well accounted for by a simple precession model with a period of 2000 yr and a mass-ejection period of 55 yr
    corecore