54,186 research outputs found

    Active control of primary mirror of an orbiting telescope with thermal excitation

    Get PDF
    The generalization is presented that was made to model a layered structure of a kind that represents a light-weighted mirror. This theory is presented along with the strategy for error suppression. The results of a variety of error-suppression studies are also presented. The computer programs for all parts of this study are included

    Cosmological structure formation from soft topological defects

    Get PDF
    Some models have extremely low-mass pseudo-Goldstone bosons that can lead to vacuum phase transitions at late times, after the decoupling of the microwave background.. This can generate structure formation at redshifts z greater than or approx 10 on mass scales as large as M approx 10 to the 18th solar masses. Such low energy transitions can lead to large but phenomenologically acceptable density inhomogeneities in soft topological defects (e.g., domain walls) with minimal variations in the microwave anisotropy, as small as delta Y/T less than or approx 10 to the minus 6 power. This mechanism is independent of the existence of hot, cold, or baryonic dark matter. It is a novel alternative to both cosmic string and to inflationary quantum fluctuations as the origin of structure in the Universe

    Symmetry group analysis of an ideal plastic flow

    Full text link
    In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material

    Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in orthorhombic DyMnO3

    Get PDF
    Synchrotron x-ray diffraction and resonant magnetic scattering experiments on single crystal DyMnO3 have been carried out between 4 and 40 K. Below TN(Dy) = 5K, the Dy magnetic moments order in a commensurate structure with propagation vector 0.5 b*. Simultaneous with the Dy magnetic ordering, an incommensurate lattice modulation with propagation vector 0.905 b* evolves while the original Mn induced modulation is suppressed and shifts from 0.78 b* to 0.81 b*. This points to a strong interference of Mn and Dy induced structural distortions in DyMnO3 besides a magnetic coupling between the Mn and Dy magnetic moments.Comment: submitted to Phys. Rev. B Rapid Communication

    Opportunities for use of exact statistical equations

    Full text link
    Exact structure function equations are an efficient means of obtaining asymptotic laws such as inertial range laws, as well as all measurable effects of inhomogeneity and anisotropy that cause deviations from such laws. "Exact" means that the equations are obtained from the Navier-Stokes equation or other hydrodynamic equations without any approximation. A pragmatic definition of local homogeneity lies within the exact equations because terms that explicitly depend on the rate of change of measurement location appear within the exact equations; an analogous statement is true for local stationarity. An exact definition of averaging operations is required for the exact equations. Careful derivations of several inertial range laws have appeared in the literature recently in the form of theorems. These theorems give the relationships of the energy dissipation rate to the structure function of acceleration increment multiplied by velocity increment and to both the trace of and the components of the third-order velocity structure functions. These laws are efficiently derived from the exact velocity structure function equations. In some respects, the results obtained herein differ from the previous theorems. The acceleration-velocity structure function is useful for obtaining the energy dissipation rate in particle tracking experiments provided that the effects of inhomogeneity are estimated by means of displacing the measurement location.Comment: accepted by Journal of Turbulenc
    corecore