5,835 research outputs found

    Two-point velocity average of turbulence: statistics and their implications

    Full text link
    For turbulence, although the two-point velocity difference u(x+r)-u(x) at each scale r has been studied in detail, the velocity average [u(x+r)+u(x)]/2 has not thus far. Theoretically or experimentally, we find interesting features of the velocity average. It satisfies an exact scale-by-scale energy budget equation. The flatness factor varies with the scale r in a universal manner. These features are not consistent with the existing assumption that the velocity average is independent of r and represents energy-containing large-scale motions alone. We accordingly propose that it represents motions over scales >= r as long as the velocity difference represents motions at the scale r.Comment: 8 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Strings on pp-waves and massive two dimensional field theories

    Full text link
    We find a general class of pp-wave solutions of type IIB string theory such that the light cone gauge worldsheet lagrangian is that of an interacting massive field theory. When the light cone Lagrangian has (2,2) supersymmetry we can find backgrounds that lead to arbitrary superpotentials on the worldsheet. We consider situations with both flat and curved transverse spaces. We describe in some detail the background giving rise to the N=2 sine Gordon theory on the worldsheet. Massive mirror symmetry relates it to the deformed CP1CP^1 model (or sausage model) which seems to elude a purely supergravity target space interpretation.Comment: harvmac, 26 pages, v2,3: references added, typos correcte

    Solution of reduced equations derived with singular perturbation methods

    Full text link
    For singular perturbation problems in dynamical systems, various appropriate singular perturbation methods have been proposed to eliminate secular terms appearing in the naive expansion. For example, the method of multiple time scales, the normal form method, center manifold theory, the renormalization group method are well known. In this paper, it is shown that all of the solutions of the reduced equations constructed with those methods are exactly equal to sum of the most divergent secular terms appearing in the naive expansion. For the proof, a method to construct a perturbation solution which differs from the conventional one is presented, where we make use of the theory of Lie symmetry group.Comment: To be published in Phys. Rev.

    The Quantum Dynamics of Heterotic Vortex Strings

    Full text link
    We study the quantum dynamics of vortex strings in N=1 SQCD with U(N_c) gauge group and N_f=N_c quarks. The classical worldsheet of the string has N=(0,2) supersymmetry, but this is broken by quantum effects. We show how the pattern of supersymmetry breaking and restoration on the worldsheet captures the quantum dynamics of the underlying 4d theory. We also find qualitative matching of the meson spectrum in 4d and the spectrum on the worldsheet.Comment: 13 page

    Fluctuations of statistics among subregions of a turbulence velocity field

    Full text link
    To study subregions of a turbulence velocity field, a long record of velocity data of grid turbulence is divided into smaller segments. For each segment, we calculate statistics such as the mean rate of energy dissipation and the mean energy at each scale. Their values significantly fluctuate, in lognormal distributions at least as a good approximation. Each segment is not under equilibrium between the mean rate of energy dissipation and the mean rate of energy transfer that determines the mean energy. These two rates still correlate among segments when their length exceeds the correlation length. Also between the mean rate of energy dissipation and the mean total energy, there is a correlation characterized by the Reynolds number for the whole record, implying that the large-scale flow affects each of the segments.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Further evidence for linearly-dispersive Cooper pairs

    Full text link
    A recent Bose-Einstein condensation (BEC) model of several cuprate superconductors is based on bosonic Cooper pairs (CPs) moving in 3D with a quadratic energy-momentum (dispersion) relation. The 3D BEC condensate-fraction vs. temperature (T/Tc, where Tc is the BEC transition temperature) formula poorly fits penetration-depth data for two cuprates in the range (1/2, 1]. We show how these fits are dramatically improved assuming cuprates to be quasi-2D, and how equally good fits obtain for conventional 3D and quasi-1D nanotube superconducting data, provided the correct CP dispersion is assumed in BEC at their assumed corresponding dimensionalities. This is offered as additional concrete empirical evidence for linearly-dispersive pairs in another recent BEC scenario of superconductors within which a BCS condensate turns out to be a very special case.Comment: 9 pages, 1 figur

    Superconformal Vortex Strings

    Full text link
    We study the low-energy dynamics of semi-classical vortex strings living above Argyres-Douglas superconformal field theories. The worldsheet theory of the string is shown to be a deformation of the CP^N model which flows in the infra-red to a superconformal minimal model. The scaling dimensions of chiral primary operators are determined and the dimensions of the associated relevant perturbations on the worldsheet and in the four dimensional bulk are found to agree. The vortex string thereby provides a map between the A-series of N=2 superconformal theories in two and four dimensions.Comment: 22 pages. v2: change to introductio

    NS5-Branes, T-Duality and Worldsheet Instantons

    Full text link
    The equivalence of NS5-branes and ALF spaces under T-duality is well known. However, a naive application of T-duality transforms the ALF space into a smeared NS5-brane, de-localized on the dual, transverse, circle. In this paper we re-examine this duality, starting from a two-dimensional N=(4,4) gauged linear sigma model describing Taub-NUT space. After dualizing the circle fiber, we find that the smeared NS5-brane target space metric receives corrections from multi-worldsheet instantons. These instantons are identified as Nielsen-Olesen vortices. We show that their effect is to break the isometry of the target space, localizing the NS5-brane at a point. The contribution from the k-instanton sector is shown to be proportional to the weighted integral of the Euler form over the k-vortex moduli space. The duality also predicts the, previously unknown, asymptotic exponential decay coefficient of the BPS vortex solution.Comment: 26 pages. v2: Fourier modes of multi-vortex fermion zero mode corrected. Reference added. v3: typo correcte

    On Landau's prediction for large-scale fluctuation of turbulence energy dissipation

    Full text link
    Kolmogorov's theory for turbulence in 1941 is based on a hypothesis that small-scale statistics are uniquely determined by the kinematic viscosity and the mean rate of energy dissipation. Landau remarked that the local rate of energy dissipation should fluctuate in space over large scales and hence should affect small-scale statistics. Experimentally, we confirm the significance of this large-scale fluctuation, which is comparable to the mean rate of energy dissipation at the typical scale for energy-containing eddies. The significance is independent of the Reynolds number and the configuration for turbulence production. With an increase of scale r above the scale of largest energy-containing eddies, the fluctuation becomes to have the scaling r^-1/2 and becomes close to Gaussian. We also confirm that the large-scale fluctuation affects small-scale statistics.Comment: 9 pages, accepted by Physics of Fluids (see http://pof.aip.org
    corecore