1,413 research outputs found

    Bose-Fermi mixtures in 1D optical superlattices

    Full text link
    The zero temperature phase diagram of binary boson-fermion mixtures in two-colour superlattices is investigated. The eigenvalue problem associated with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical diagonalization technique, supplemented by an adaptive basis truncation scheme. The physically motivated basis truncation allows to access larger systems in a fully controlled and very flexible framework. Several experimentally relevant observables, such as the matter-wave interference pattern and the condensatefraction, are investigated in order to explore the rich phase diagram. At symmetric half filling a phase similar to the Mott-insulating phase in a commensurate purely bosonic system is identified and an analogy to recent experiments is pointed out. Furthermore a phase of complete localization of the bosonic species generated by the repulsive boson-fermion interaction is identified. These localized condensates are of a different nature than the genuine Bose-Einstein condensates in optical lattices.Comment: 18 pages, 9 figure

    Entrepreneurial Leadership and Teamwork: The Key to Innovation in the 21st Century

    Get PDF
    Entrepreneurial leadership and continuous innovation are vital components of 21st century communities and organizations. Entrepreneurial leaders must realize the importance of environmental, social and global issues while creating an atmosphere of innovation designed to help followers become more entrepreneurial themselves. Entrepreneurial individuals and teams have the ability to recognize and capitalize on opportunities, innovate, take risks, adapt to rapid change and marshal resources to achieve their goals. When individuals come together as an effective team, they can produce a synergy to meet the demands of a rapidly changing and competitive work environment. Therefore, entrepreneurial leaders must develop entrepreneurial individuals and teams while integrating innovation throughout their organizational culture. This interactive session will present research-based information on entrepreneurial leaders and teams. The session will also provide opportunities for discussion and active learning designed to increase the entrepreneurial leadership capacity of individuals and teams with a specific focus on innovation

    Photon pressure induced test mass deformation in gravitational-wave detectors

    Get PDF
    A widely used assumption within the gravitational-wave community has so far been that a test mass acts like a rigid body for frequencies in the detection band, i.e. for frequencies far below the first internal resonance. In this article we demonstrate that localized forces, applied for example by a photon pressure actuator, can result in a non-negligible elastic deformation of the test masses. For a photon pressure actuator setup used in the gravitational wave detector GEO600 we measured that this effect modifies the standard response function by 10% at 1 kHz and about 100% at 2.5 kHz

    MTP: A Movie Transmission Protocol for Multimedia Applications

    Full text link
    Typical color video adapters of today's PCs and workstationsuse 8 bits per pixel as an index into the color lookup table (CLUT). Full color pictures and movies have to be reduced to 256 colors. In order to avoid false colors between two frames of a digital movie, a novel technique for computing the CLUT's is proposed: A subset of the CLUT entries is reserved for new colors of the next frame. The paper presents an algorithm for the gradual adaption of the color lookup table during the transmission of a movie. First experience is reported in the framework of the XMovie project

    3D X-ray Microtomography Volume Correlation to Study Fatigue Crack Growth

    Get PDF
    International audienceGlobal digital volume correlation is used to analyze a series of computed tomography images of a nodular graphite cast iron specimen subjected in situ to a fatigue test. From the obtained displacement field, a specific procedure is implemented to extract stress intensity factors all along the crack front. The proposed methodology allows one to measure key parameters in fatigue crack propagation directly from 3D images

    Self-similar chain conformations in polymer gels

    Full text link
    We use molecular dynamics simulations to study the swelling of randomly end-cross-linked polymer networks in good solvent conditions. We find that the equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand lengths N_s exceeding the melt entanglement length N_e. The internal structure of the network strands in the swollen state is characterized by a new exponent nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory argument for a self-similar structure of mutually interpenetrating network strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand length.Comment: 4 pages, RevTex, 3 Figure

    Auger recombination suppression and band alignment in GaAsBi/GaAs heterostructures

    Get PDF
    Using a combination of experimental and theoretical techniques we present the dependence of the bandgap Eg and the spin orbit splitting energy so, with Bi concentration in GaAsBi/GaAs samples. We find that the concentration at which so,> Eg occurs at 9%. Both spectroscopic as well as first device results indicate a type I alignment

    Probing seed black holes using future gravitational-wave detectors

    Full text link
    Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will bridge this gap, including the third generation ground-based Einstein Telescope and the space-based detector DECIGO. In this paper we demonstrate that such future detectors should be able to detect gravitational waves produced by the coalescence of the first generation of light seed black-hole binaries and provide information on the evolution of structure in that era. These observations will be complementary to those that LISA will make of subsequent mergers between more massive black holes. We compute the sensitivity of various future detectors to seed black-hole mergers, and use this to explore the number and properties of the events that each detector might see in three years of observation. For this calculation, we make use of galaxy merger trees and two different seed black hole mass distributions in order to construct the astrophysical population of events. We also consider the accuracy with which networks of future ground-based detectors will be able to measure the parameters of seed black hole mergers, in particular the luminosity distance to the source. We show that distance precisions of ~30% are achievable, which should be sufficient for us to say with confidence that the sources are at high redshift.Comment: 14 pages, 6 figures, 2 tables, accepted for proceedings of 13th GWDAW meetin

    GEO 600 and the GEO-HF upgrade program: successes and challenges

    Get PDF
    The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
    • …
    corecore