3,119 research outputs found
The evolutionary time scale of Sakurai's object: A test of convection theory?
Sakurai's object (V4334 Sgr) is a born again AGB star following a very late
thermal pulse. So far no stellar evolution models have been able to explain the
extremely fast evolution of this star, which has taken it from the pre-white
dwarf stage to its current appearance as a giant within only a few years. A
very high stellar mass can be ruled out as the cause of the fast evolution.
Instead the evolution time scale is reproduced in stellar models by making the
assumption that the efficiency for element mixing in the He-flash convection
zone during the very late thermal pulse is smaller than predicted by the
mixing-length theory. As a result the main energy generation from fast proton
capture occurs closer to the surface and the expansion to the giant state is
accelerated to a few years. Assuming a mass of V4334 Sgr of 0.604Msun -- which
is consistent with a distance of 4kpc -- a reduction of the mixing length
theory mixing efficiency by a factor of ~ 100 is required to match its
evolutionary time scale. This value decreases if V4334 Sgr has a smaller mass
and accordingly a smaller distance. However, the effect does not disappear for
the smallest possible masses. These findings may present a semi-empirical
constraint on the element mixing in convective zones of the stellar interior.Comment: 16 pages, 3 figures, ApJ Letter, in press; some additional
information as well as modifications as a result of the refereeing process,
improved layout of prev. Fig.1 (now Fig.1 and Fig.2
The Supernova Channel of Super-AGB Stars
We study the late evolution of solar metallicity stars in the transition
region between white dwarf formation and core collapse. This includes the
super-asymptotic giant branch (super-AGB, SAGB) stars, which have massive
enough cores to ignite carbon burning and form an oxygen-neon (ONe) core. The
most massive SAGB stars have cores that may grow to the Chandrasekhar mass
because of continued shell-burning. Their cores collapse, triggering a so
called electron capture supernovae (ECSN). From stellar evolution models we
find that the initial mass range for SAGB evolution is 7.5 ... 9.25\msun. We
perform calculations with three different stellar evolution codes to
investigate the sensitivity of this mass range to some of the uncertainties in
current stellar models. The mass range significantly depends on the treatment
of semiconvective mixing and convective overshooting. To consider the effect of
a large number of thermal pulses, as expected in SAGB stars, we construct
synthetic SAGB models that include a semi-analytical treatment of dredge-up,
hot-bottom burning, and thermal pulse properties. This synthetic model enables
us to compute the evolution of the main properties of SAGB stars from the onset
of thermal pulses until the core reaches the Chandrasekhar mass or is uncovered
by the stellar wind. Thereby, we determine the stellar initial mass ranges that
produce ONe-white dwarfs and electron-capture supernovae. The latter is found
to be 9.0 ... 9.25\msun for our fiducial model, implying that electron-capture
supernovae would constitute about 4% of all supernovae in the local universe.
Our synthetic approach allows us to explore the uncertainty of this number
imposed by uncertainties in the third dredge-up efficiency and ABG mass loss
rate. We find for ECSNe a upper limit of ~20% of all supernovae (abridged).Comment: 13 pages, 16 figures, submitted to ApJ, uses emulateap
The s-Process in Rotating Asymptotic Giant Branch Stars
(abridged) We model the nucleosynthesis during the thermal pulse phase of a
rotating, solar metallicity AGB star of 3M_sun. Rotationally induced mixing
during the thermal pulses produces a layer (~2E-5M_sun) on top of the CO-core
where large amounts of protons and C12 co-exist. We follow the abundance
evolution in this layer, in particular that of the neutron source C13 and of
the neutron poison N14. In our AGB model mixing persists during the entire
interpulse phase due to the steep angular velocity gradient at the
core-envelope interface. We follow the neutron production during the interpulse
phase, and find a resulting maximum neutron exposure of tau_max =0.04 mbarn^-1,
which is too small to produce any significant s-process. In parametric models,
we then investigate the combined effects of diffusive overshooting from the
convective envelope and rotationally induced mixing. Models with overshoot and
weaker interpulse mixing - as perhaps expected from more slowly rotating stars
- yield larger neutron exposures. We conclude that the incorporation of
rotationally induce mixing processes has important consequences for the
production of heavy elements in AGB stars. Through a distribution of initial
rotation rates it may lead to a natural spread in the neutron exposures
obtained in AGB stars of a given mass - as appears to be required by
observations. Our results suggest that both processes, diffusive overshoot and
rotational mixing, may be required to obtain a consistent description of the
s-process in AGB stars which fulfils all observational constraints. Finally, we
find that mixing due to rotation within our current framework does increase the
production of N15 in the partial mixing zone, however still falling short of
what seems required by observations.Comment: 50 pages, 13 figures, ApJ in press, tentatively scheduled for v593 n2
August 20, 200
Code dependencies of pre-supernova evolution and nucleosynthesis in massive stars: Evolution to the end of core helium burning
Massive stars are key sources of radiative, kinetic and chemical feedback in the Universe. Grids of massive star models computed by different groups each using their own codes, input physics choices and numerical approximations, however, lead to inconsistent results for the same stars. We use three of these 1D codes – genec, kepler and mesa – to compute non-rotating stellar models of 15, 20 and 25 M⊙ and compare their nucleosynthesis. We follow the evolution from the main sequence until the end of core helium burning. The genec and kepler models hold physics assumptions used in large grids of published models. The mesa code was set up to use convective core overshooting such that the CO core masses are consistent with those obtained by genec. For all models, full nucleosynthesis is computed using the NuGrid post-processing tool mppnp. We find that the surface abundances predicted by the models are in reasonable agreement. In the helium core, the standard deviation of the elemental overproduction factors for Fe to Mo is less than 30 per cent – smaller than the impact of the present nuclear physics uncertainties. For our three initial masses, the three stellar evolution codes yield consistent results. Differences in key properties of the models, e.g. helium and CO core masses and the time spent as a red supergiant, are traced back to the treatment of convection and, to a lesser extent, mass loss. The mixing processes in stars remain the key uncertainty in stellar modelling. Better constrained prescriptions are thus necessary to improve the predictive power of stellar evolution models
Fuel-Supply-Limited Stellar Relaxation Oscillations: Application to Multiple Rings around AGB Stars and Planetary Nebulae
We describe a new mechanism for pulsations in evolved stars: relaxation
oscillations driven by a coupling between the luminosity-dependent mass-loss
rate and the H fuel abundance in a nuclear-burning shell. When mass loss is
included, the outward flow of matter can modulate the flow of fuel into the
shell when the stellar luminosity is close to the Eddington luminosity . When the luminosity drops below , the mass outflow declines
and the shell is re-supplied with fuel. This process can be repetitive. We
demonstrate the existence of such oscillations and discuss the dependence of
the results on the stellar parameters. In particular, we show that the
oscillation period scales specifically with the mass of the H-burning
relaxation shell (HBRS), defined as the part of the H-burning shell above the
minimum radius at which the luminosity from below first exceeds the Eddington
threshold at the onset of the mass loss phase. For a stellar mass M_*\sim
0.7\Msun, luminosity L_*\sim 10^4\Lsun, and mass loss rate |\dot M|\sim
10^{-5}\Msun yr, the oscillations have a recurrence time
years , where is the timescale for
modulation of the fuel supply in the HBRS by the varying mass-loss rate. This
period agrees with the 1400-year period inferred for the spacings
between the shells surrounding some planetary nebulae, and the the predictied
shell thickness, of order 0.4 times the spacing, also agrees reasonably well.Comment: 15 pages TeX, 1 ps figure submitted to Ap
Hot DQ White Dwarfs: Something Different
We present a detailed analysis of all the known Hot DQ white dwarfs in the
Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to
have carbon dominated atmospheres. Our spectroscopic and photometric analysis
reveals that these objects all have effective temperatures between ~18,000 and
24,000 K. The surface composition is found to be completely dominated by
carbon, as revealed by the absence of Hbeta and HeI 4471 lines (or
determination of trace amount in a few cases). We find that the surface gravity
of all objects but one seems to be ''normal'' and around log g = 8.0 while one
is likely near log g = 9.0. The presence of a weak magnetic field is directly
detected by spectropolarimetry in one object and is suspected in two others. We
propose that these strange stars could be cooled down versions of the weird
PG1159 star H1504+65 and form a new family of hydrogen and helium deficient
objects following the post-AGB phase. Finally, we present the results of full
nonadiabatic calculations dedicated specifically to each of the Hot DQ that
show that only SDSS J142625.70+575218.4 is expected to exhibit luminosity
variations. This result is in excellent agreement with recent observations by
Montgomery et al. who find that J142625.70+575218.4 is the only pulsator among
6 Hot DQ white dwarfs surveyed in February 2008.Comment: 33 pages, 7 figures, accepted for publication in Ap
Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars
New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are
presented. The models have been evolved from the pre Main Sequence up to the
Asymptotic Giant Branch (AGB). At variance with previous claims, we find that
these updated stellar models do experience thermal pulses in the AGB phase. In
particular we show that: a) in models with mass larger than 6 Mo, the second
dredge up is able to raise the CNO abundance in the envelope enough to allow a
"normal" AGB evolution, in the sense that the thermal pulses and the third
dredge up settle on; b) in models of lower mass, the efficiency of the CNO
cycle in the H-burning shell is controlled by the carbon produced locally via
the 3alpha reactions. Nevertheless the He-burning shell becomes thermally
unstable after the early AGB. The expansion of the overlying layers induced by
these weak He-shell flashes is not sufficient by itself to allow a deep
penetration of the convective envelope. However, immediately after that, the
maximum luminosity of the He flash is attained and a convective shell
systematically forms at the base of the H-rich envelope. The innermost part of
this convective shell probably overlaps the underlying C-rich region left by
the inter-shell convection during the thermal pulse, so that fresh carbon is
dredged up in a "hot" H-rich environment and a H flash occurs. This flash
favours the expansion of the outermost layers already started by the weak
thermal pulse and a deeper penetration of the convective envelope takes place.
Then, the carbon abundance in the envelope rises to a level high enough that
the further evolution of these models closely resembles that of more metal rich
AGB stars. These stars provide an important source of primary carbon and
nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap
Evolution and Yields of Extremely Metal Poor Intermediate Mass Stars
Intermediate mass stellar evolution tracks from the main sequence to the tip
of the AGB for five initial masses (2 to 6Msun) and metallicity Z=0.0001 have
been computed. The detailed 1D structure and evolution models include
exponential overshooting, mass loss and a detailed nucleosynthesis network with
updated nuclear reaction rates. The network includes a two-particle heavy
neutron sink for approximating neutron density in the He-shell flash. It is
shown how the neutron-capture nucleosynthesis is important in models of very
low metallicity for the formation of light neutron-heavy species, like sodium
or the heavy neon and magnesium isotopes. The models have high resolution, as
required for modeling the third dredge-up. All sequences have been followed
from the pre-main sequence to the end of the AGB when all envelope mass is
lost. Detailed structural and chemical model properties as well as yields are
presented. This set of stellar models is based on standard assumptions and
updated input physics. It can be confronted with observations of
extremely-metal poor stars and may be used to assess the role of AGB stars in
the origin of abundance anomalies of some Globular Cluster members of
correspondingly low metallicity.Comment: 40 pages, 11 figures, to appear in ApJS, including 5 electronic
table
- …