245 research outputs found
Development of magnetic logic batch fabrication techniques Final report
Magnetic logic batch fabrication technique
Method for making conductors for ferrite memory arrays
The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material
BRS Ourominas: nova cultivar de arroz irrigado para Mato Grosso do Sul.
bitstream/item/24863/1/COT200254.pdfDocumento on-line
Batch fabrication process development for ferrite logic conductors
A process for fabricating ultrareliable magnetic ferrite logic circuits is described in which the conductors are formed by a combination of two batch type processes - photolithography and electroplating - and a mechanized writing process for completing conductors in the third dimension. Up to 4 turns, through an aperture 1 mm in diameter, are formed by the described process. The number of joints in the conductors is reduced by use of this process to only those which are required for input, output and power connections of a logic block. To demonstrate feasibility, 8-stage magnetic ring counter circuits have been fabricated
A GPS Receiver for Lunar Missions
Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory
High Temperature Matter and Gamma Ray Spectra from Microscopic Black Holes
The relativistic viscous fluid equations describing the outflow of high
temperature matter created via Hawking radiation from microscopic black holes
are solved numerically for a realistic equation of state. We focus on black
holes with initial temperatures greater than 100 GeV and lifetimes less than 6
days. The spectra of direct photons and photons from decay are
calculated for energies greater than 1 GeV. We calculate the diffuse gamma ray
spectrum from black holes distributed in our galactic halo. However, the most
promising route for their observation is to search for point sources emitting
gamma rays of ever-increasing energy.Comment: 33 pages, 13 figures, to be submitted to PR
Calculation of the emergent spectrum and observation of primordial black holes
We calculate the emergent spectrum of microscopic black holes, which emit
copious amounts of thermal ``Hawking'' radiation, taking into account the
proposition that (contrary to previous models) emitted quarks and gluons do not
directly fragment into hadrons, but rather interact and form a photosphere and
decrease in energy before fragmenting. The resulting spectrum emits copious
amount of photons at energies around 100MeV. We find that the limit on the
average universal density of black holes is not significantly affected by the
photosphere. However we also find that gamma ray satellites such as EGRET and
GLAST are well suited to look for nearby black holes out to a distance on the
order of 0.3 parsecs, and conclude that if black holes are clustered locally as
much as luminous matter, they may be directly detectable.Comment: 10 pages, Latex, submitted to PR
Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole
The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the
linear two-fluid equations describing transverse and longitudinal waves
propagating in the two-fluid ideal collisionless plasmas surrounding a
Schwarzschild black hole. The plasma is assumed to be falling in radial
direction toward the event horizon. The relativistic two-fluid equations have
been reformulate, in analogy with the special relativistic formulation as
explained in an earlier paper, to take account of relativistic effects due to
the event horizon. Here a WKB approximation is used to derive the local
dispersion relation for these waves and solved numerically for the wave number
k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with
arXiv:0902.3766, arXiv:0807.459
Black Hole Chromosphere at the LHC
If the scale of quantum gravity is near a TeV, black holes will be copiously
produced at the LHC. In this work we study the main properties of the light
descendants of these black holes. We show that the emitted partons are closely
spaced outside the horizon, and hence they do not fragment into hadrons in
vacuum but more likely into a kind of quark-gluon plasma. Consequently, the
thermal emission occurs far from the horizon, at a temperature characteristic
of the QCD scale. We analyze the energy spectrum of the particles emerging from
the "chromosphere", and find that the hard hadronic jets are almost entirely
suppressed. They are replaced by an isotropic distribution of soft photons and
hadrons, with hundreds of particles in the GeV range. This provides a new
distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys.
Rev. D. Additional details provided on the effect of the chromosphere in
cosmic ray shower
Scales of the Extra Dimensions and their Gravitational Wave Backgrounds
Circumstances are described in which symmetry breaking during the formation
of our three-dimensional brane within a higher-dimensional space in the early
universe excites mesoscopic classical radion or brane-displacement degrees of
freedom and produces a detectable stochastic background of gravitational
radiation. The spectrum of the background is related to the unification energy
scale and the the sizes and numbers of large extra dimensions. It is shown that
properties of the background observable by gravitational-wave observatories at
frequencies Hz to Hz contain information about
unification on energy scales from 1 to TeV, gravity propagating
through extra-dimension sizes from 1 mm to mm, and the dynamical
history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re
- …