272 research outputs found
MeV neutrinos in double beta decay
The effect of Majorana neutrinos in the MeV mass range on the double beta
decay of various isotopes is studied on pure phenomenological arguments. By
using only experimental half life data, limits on the mixing parameter
of the order 10 can be derived. Also the possible
achievements of upcoming experiments and some consequences are outlined.Comment: 7 pages, 6 uudecoded EPS-figure
Overlap of QRPA states based on ground states of different nuclei --mathematical properties and test calculations--
The overlap of the excited states in quasiparticle random-phase approximation
(QRPA) is calculated in order to simulate the overlap of the intermediate
nuclear states of the double-beta decay. Our basic idea is to use the
like-particle QRPA with the aid of the closure approximation and calculate the
overlap as rigorously as possible by making use of the explicit equation of the
QRPA ground state. The formulation is shown in detail, and the mathematical
properties of the overlap matrix are investigated. Two test calculations are
performed for relatively light nuclei with the Skyrme and volume delta-pairing
energy functionals. The validity of the truncations used in the calculation is
examined and confirmed.Comment: 17 pages, 15 figures, full paper following arXiv:1205.5354 and Phys.
Rev. C 86 (2012) 021301(R
Global Hopf bifurcation in the ZIP regulatory system
Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been
modeled by a system of ordinary differential equations based on the uptake of
zinc, expression of a transporter protein and the interaction between an
activator and inhibitor. For certain parameter choices the steady state of this
model becomes unstable upon variation in the external zinc concentration.
Numerical results show periodic orbits emerging between two critical values of
the external zinc concentration. Here we show the existence of a global Hopf
bifurcation with a continuous family of stable periodic orbits between two Hopf
bifurcation points. The stability of the orbits in a neighborhood of the
bifurcation points is analyzed by deriving the normal form, while the stability
of the orbits in the global continuation is shown by calculation of the Floquet
multipliers. From a biological point of view, stable periodic orbits lead to
potentially toxic zinc peaks in plant cells. Buffering is believed to be an
efficient way to deal with strong transient variations in zinc supply. We
extend the model by a buffer reaction and analyze the stability of the steady
state in dependence of the properties of this reaction. We find that a large
enough equilibrium constant of the buffering reaction stabilizes the steady
state and prevents the development of oscillations. Hence, our results suggest
that buffering has a key role in the dynamics of zinc homeostasis in plant
cells.Comment: 22 pages, 5 figures, uses svjour3.cl
Microscopic theories of neutrino-^{12}C reactions
In view of the recent experiments on neutrino oscillations performed by the
LSND and KARMEN collaborations as well as of future experiments, we present new
theoretical results of the flux averaged and
cross sections. The approaches used are
charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the
Shell Model. With a large-scale shell model calculation the exclusive cross
sections are in nice agreement with the experimental values for both reactions.
The inclusive cross section for coming from the decay-in-flight of
is to be compared to the experimental value
of , while the one due to
coming from the decay-at-rest of is which
agrees within experimental error bars with the measured values. The shell model
prediction for the decay-in-flight neutrino cross section is reduced compared
to the RPA one. This is mainly due to the different kind of correlations taken
into account in the calculation of the spin modes and partially due to the
shell-model configuration basis which is not large enough, as we show using
arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann-Robertson-Walker Universe
We set up the Dirac equation in a Friedmann-Robertson-Walker geometry and
separate the spatial and time variables. In the case of a closed universe, the
spatial dependence is solved explicitly, giving rise to a discrete set of
solutions. We compute the probability integral and analyze a space-time
normalization integral. This analysis allows us to introduce the fermionic
projector in a closed Friedmann-Robertson-Walker geometry and to specify its
global normalization as well as its local form.Comment: 22 pages, LaTeX, sign error in equation (3.7) correcte
R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay
We consider contributions of R-parity conserving softly broken supersymmetry
(SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating
sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY
model with a Majorana neutrino mass. The new R-parity conserving SUSY
contributions to \znbb are realized at the level of box diagrams. We derive
the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and
the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to
the Majorana neutrino mass is also derived.
Given the data on the \znbb-decay half-life of Ge and the neutrino
mass we obtain constraints on the (B-L)-violating sneutrino mass. These
constraints leave room for accelerator searches for certain manifestations of
the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most
probably too tight for first generation (B-L)-violating sneutrino masses to be
searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende
Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population
Mineral nutrient malnutrition, and particularly
deficiency in zinc and iron, afflicts over 3 billion people
worldwide. Wild emmer wheat, Triticum turgidum ssp.
dicoccoides, genepool harbors a rich allelic repertoire for
mineral nutrients in the grain. The genetic and physiological
basis of grain protein, micronutrients (zinc, iron,
copper and manganese) and macronutrients (calcium,
magnesium, potassium, phosphorus and sulfur) concentration
was studied in tetraploid wheat population of 152
recombinant inbred lines (RILs), derived from a cross
between durum wheat (cv. Langdon) and wild emmer
(accession G18-16). Wide genetic variation was found
among the RILs for all grain minerals, with considerable
transgressive effect. A total of 82 QTLs were mapped for
10 minerals with LOD score range of 3.2–16.7. Most QTLs
were in favor of the wild allele (50 QTLs). Fourteen pairs
of QTLs for the same trait were mapped to seemingly
homoeologous positions, reflecting synteny between the A
and B genomes. Significant positive correlation was found
between grain protein concentration (GPC), Zn, Fe and Cu,
which was supported by significant overlap between the
respective QTLs, suggesting common physiological and/or
genetic factors controlling the concentrations of these
mineral nutrients. Few genomic regions (chromosomes 2A,
5A, 6B and 7A) were found to harbor clusters of QTLs for
GPC and other nutrients. These identified QTLs may
facilitate the use of wild alleles for improving grain
nutritional quality of elite wheat cultivars, especially in
terms of protein, Zn and Fe
Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants
Deoxymugineic acid (DMA) is a member of the mugineic acid family phytosiderophores (MAs), which are natural metal chelators produced by graminaceous plants. Rice secretes DMA in response to Fe deficiency to take up Fe in the form of Fe(III)–MAs complex. In contrast with barley, the roots of which secrete MAs in response to Zn deficiency, the amount of DMA secreted by rice roots was slightly decreased under conditions of low Zn supply. There was a concomitant increase in endogenous DMA in rice shoots, suggesting that DMA plays a role in the translocation of Zn within Zn-deficient rice plants. The expression of OsNAS1 and OsNAS2 was not increased in Zn-deficient roots but that of OsNAS3 was increased in Zn-deficient roots and shoots. The expression of OsNAAT1 was also increased in Zn-deficient roots and dramatically increased in shoots; correspondingly, HPLC analysis was unable to detect nicotianamine in Zn-deficient shoots. The expression of OsDMAS1 was increased in Zn-deficient shoots. Analyses using the positron-emitting tracer imaging system (PETIS) showed that Zn-deficient rice roots absorbed less 62Zn-DMA than 62Zn2+. Importantly, supply of 62Zn-DMA rather than 62Zn2+ increased the translocation of 62Zn into the leaves of Zn-deficient plants. This was especially evident in the discrimination center (DC). These results suggest that DMA in Zn-deficient rice plants has an important role in the distribution of Zn within the plant rather than in the absorption of Zn from the soil
- …