456 research outputs found
Anderson localization of elementary excitations in a one dimensional Bose-Einstein condensate
We study the elementary excitations of a transversely confined Bose-Einstein
condensate in presence of a weak axial random potential. We determine the
localization length (i) in the hydrodynamical low energy regime, for a domain
of linear densities ranging from the Tonks-Girardeau to the transverse
Thomas-Fermi regime, in the case of a white noise potential and (ii) for all
the range of energies, in the ``one-dimensional mean field regime'', in the
case where the randomness is induced by a series of randomly placed point-like
impurities. We discuss our results in view of recent experiments in elongated
BEC systems.Comment: 11 pages, 6 figures. Final printed versio
Output spectrum of a measuring device at arbitrary voltage and temperature
We calculate the noise spectrum of the electrical current in a quantum point
contact which is used for continuous measurements of a two-level system
(qubit). We generalize the previous results obtained for the regime of high
transport voltages (when is much larger than the qubit's energy level
splitting (we put )) to the case of arbitrary voltages and
temperatures. When the background output spectrum is essentially
asymmetric in frequency, i.e., it is no longer classical. Yet, the spectrum of
the amplified signal, i.e., the two coherent peaks at is still
symmetric. In the emission (negative frequency) part of the spectrum the
coherent peak can be 8 times higher than the background pedestal.
Alternatively, this ratio can be seen in the directly measureable {\it excess}
noise. For and T=0 the coherent peaks do not appear at all. We relate
these results to the properties of linear amplifiers.Comment: 7 pages, 5 figures, the results generalized for arbitrary angle
between the magnetic field and the observed component of the spin, minor
corrections and typo
Classical and novel TSPO ligands for the mitochondrial TSPO can modulate nuclear gene expression: Implications for mitochondrial retrograde signaling
It is known that knockdown of the mitochondrial 18 kDa translocator protein (TSPO) as well as TSPO ligands modulate various functions, including functions related to cancer. To study the ability of TSPO to regulate gene expression regarding such functions, we applied microarray analysis of gene expression to U118MG glioblastoma cells. Within 15 min, the classical TSPO ligand PK 11195 induced changes in expression of immediate early genes and transcription factors. These changes also included gene products that are part of the canonical pathway serving to modulate general gene expression. These changes are in accord with real-time, reverse transcriptase (RT) PCR. At the time points of 15, 30, 45, and 60 min, as well as 3 and 24 h of PK 11195 exposure, the functions associated with the changes in gene expression in these glioblastoma cells covered well known TSPO functions. These functions included cell viability, proliferation, differentiation, adhesion, migration, tumorigenesis, and angiogenesis. This was corroborated microscopically for cell migration, cell accumulation, adhesion, and neuronal differentiation. Changes in gene expression at 24 h of PK 11195 exposure were related to downregulation of tumorigenesis and upregulation of programmed cell death. In the vehicle treated as well as PK 11195 exposed cell cultures, our triple labeling showed intense TSPO labeling in the mitochondria but no TSPO signal in the cell nuclei. Thus, mitochondrial TSPO appears to be part of the mitochondria-to-nucleus signaling pathway for modulation of nuclear gene expression. The novel TSPO ligand 2-Cl-MGV-1 appeared to be very specific regarding modulation of gene expression of immediate early genes and transcription factors
Taking stock of nature: Essential biodiversity variables explained
In 2013, the Group on Earth Observations Biodiversity Observation Network (GEO BON) developed the framework of Essential Biodiversity Variables (EBVs), inspired by the Essential Climate Variables (ECVs). The EBV framework was developed to distill the complexity of biodiversity into a manageable list of priorities and to bring a more coordinated approach to observing biodiversity on a global scale. However, efforts to address the scientific challenges associated with this task have been hindered by diverse interpretations of the definition of an EBV. Here, the authors define an EBV as a critical biological variable that characterizes an aspect of biodiversity, functioning as the interface between raw data and indicators. This relationship is clarified through a multi-faceted stock market analogy, drawing from relevant examples of biodiversity indicators that use EBVs, such as the Living Planet Index and the UK Spring Index. Through this analogy, the authors seek to make the EBV concept accessible to a wider audience, especially to non-specialists and those in the policy sector, and to more clearly define the roles of EBVs and their relationship with biodiversity indicators. From this we expect to support advancement towards globally coordinated measurements of biodiversity
Variational Methods for Biomolecular Modeling
Structure, function and dynamics of many biomolecular systems can be
characterized by the energetic variational principle and the corresponding
systems of partial differential equations (PDEs). This principle allows us to
focus on the identification of essential energetic components, the optimal
parametrization of energies, and the efficient computational implementation of
energy variation or minimization. Given the fact that complex biomolecular
systems are structurally non-uniform and their interactions occur through
contact interfaces, their free energies are associated with various interfaces
as well, such as solute-solvent interface, molecular binding interface, lipid
domain interface, and membrane surfaces. This fact motivates the inclusion of
interface geometry, particular its curvatures, to the parametrization of free
energies. Applications of such interface geometry based energetic variational
principles are illustrated through three concrete topics: the multiscale
modeling of biomolecular electrostatics and solvation that includes the
curvature energy of the molecular surface, the formation of microdomains on
lipid membrane due to the geometric and molecular mechanics at the lipid
interface, and the mean curvature driven protein localization on membrane
surfaces. By further implicitly representing the interface using a phase field
function over the entire domain, one can simulate the dynamics of the interface
and the corresponding energy variation by evolving the phase field function,
achieving significant reduction of the number of degrees of freedom and
computational complexity. Strategies for improving the efficiency of
computational implementations and for extending applications to coarse-graining
or multiscale molecular simulations are outlined.Comment: 36 page
Efficaciousness of low affinity compared to high affinity TSPO ligands in the inhibition of hypoxic mitochondrial cellular damage induced by cobalt chloride in human lung H1299 cells
The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (D m) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 μM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), D m depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 μM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2-induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 μM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 μM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD
Relation of Adiponectin to Glucose Tolerance Status, Adiposity, and Cardiovascular Risk Factor Load
Objective. Adiponectin has anti-atherogenic and anti-inflammatory properties. We investigated the influence of adiponectin on glucose tolerance status, adiposity and cardiovascular risk factors (CVRFs). Design and Patients. Study consisted of 107 subjects: 55 with normal glucose tolerance (NGT) and 52 with impaired glucose regulation (IGR) who were divided into two groups: 24 subjects with impaired fasting glucose (IFG Group) and 28 patients with type 2 diabetes mellitus (DM Group). In additional analysis, study participants were divided into two groups, according to CVRFs: low and high risk.
Measurements: Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Measurements. Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Results. Adiponectin was significantly higher in NGT group than in IFG (P = 0.003) and DM (P = 0.01) groups. Adiponectin was significantly, positively associated with HDL and inversely associated with glucose, HbA1c, ALT, AST, TG, HOMA-IR. Patients with higher CVRFs load have lesser adiponectin compared to patients with low cardiovascular risk P < 0.0001). Adiponectin was inversely associated with the number of risk factors (r = −0.430, P = 0.0001). Conclusions. Circulating adiponectin was significantly lower in subjects with different degree of IGR compared to subjects with normal glucose homeostasis. Adiponectin was significantly lower in high risk group than low risk group and decreased concurrently with increased number of CVRFs
Об использовании элементов метода ветвей и границ в схемах динамического программирования
Рассматривается возможный способ повышения эффективности алгоритмов по методу динамического программирования при решении условных экстремальных задач с аддитивными целевыми функциями, заданными на дискретных множествах. Основной идеей рассматриваемого способа является сокращение областей определения экстремума при решении рекуррентных уравнений Беллмана путем сравнения текущих значений функции Беллмана с рекордом, аналогично схеме метода ветвей и границ
Continuation for thin film hydrodynamics and related scalar problems
This chapter illustrates how to apply continuation techniques in the analysis
of a particular class of nonlinear kinetic equations that describe the time
evolution through transport equations for a single scalar field like a
densities or interface profiles of various types. We first systematically
introduce these equations as gradient dynamics combining mass-conserving and
nonmass-conserving fluxes followed by a discussion of nonvariational amendmends
and a brief introduction to their analysis by numerical continuation. The
approach is first applied to a number of common examples of variational
equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including
certain thin-film equations for partially wetting liquids on homogeneous and
heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal
equations. Second we consider nonvariational examples as the
Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard
equations and thin-film equations describing stationary sliding drops and a
transversal front instability in a dip-coating. Through the different examples
we illustrate how to employ the numerical tools provided by the packages
auto07p and pde2path to determine steady, stationary and time-periodic
solutions in one and two dimensions and the resulting bifurcation diagrams. The
incorporation of boundary conditions and integral side conditions is also
discussed as well as problem-specific implementation issues
Trunk Refugia : A Simple, Inexpensive Method for Sampling Tree Trunk Arthropods
Trees host a large share of the global arthropod diversity. Several methodologies have been described to sample arthropods from trees, ranging from active sampling techniques (e.g., visual searching, beating, or shaking the branches) to passive sampling devices. The majority of these collection techniques are destructive, and do not specifically target the tree trunk arthropod fauna. Here, we describe an alternative sampling method called trunk refugia (TR). TR are cylindrical shelters made of corrugated cardboard that can be secured to trees using string, and can remain exposed for varying time periods. These refugia are inexpensive, easy to use, and suitable to monitor a diverse array of insects and arachnids. Moreover, TR are nonlethal sampling tools, and allow collecting live individuals for behavioral studies or for rearing.RESUMEN: Los árboles albergan una gran parte de la diversidad global de artrópodos. Varias metodologías han sido descritas para muestrear artrópodos de árboles, desde técnicas activas (e.g., búsqueda visual, red de golpeo) hasta dispositivos de muestreo pasivo. La mayoría de estas técnicas son letales, y no están dirigidas específicamente a los artrópodos de troncos de árboles. Describimos aquí un método alternativo llamado trampas refugio (TR). Las TR son refugios hechos de cartón corrugado que se colocan en los troncos usando cuerda, y pueden permanecer expuestos por períodos variables. Estas trampas son económicas, fáciles de usar, y apropiadas para monitorear una gran variedad de insectos y arácnidos. Además, las TR son no-letales, por lo que permiten la colección de individuos vivos para estudios de comportamiento o crianza.Jacob Blaustein Center for Scientific Cooperation; Israel Nature and Parks Authorities (INPA); Israel's National Nature Assessment Program (HAMAARAG); Israel Ministry of Agriculture (131-1793-14)info:eu-repo/semantics/publishedVersio
- …
