12 research outputs found

    Cuerpo y disciplina, orden y poder: Del Instructor Popular a los Tribunales Infantiles

    Get PDF
    A fines del siglo XIX, en la República Argentina, el periódico mendocino El Instructor Popular publica el intercambio epistolar entre dos graduados de la Escuela Normal de Paraná: Carlos Norberto Vergara y Ernesto A.Bavio. Reprender, reformar y corregir el error, las faltas y la ignorancia, fueron las justificaciones para hacer uso de punteros y palmetas e incorporar la pena, el dolor y la culpa como correctivos, en las instituciones educativas de "la letra con la sangre entra" en manos de "maestros normales que quieren gobernar con el lático". El espistolario visibiliza y reprueba ciertas prácticas que tuvieron al cuerpo infantil como territorio de anclaje para la institucionalización educativa. Puntear esa conjetura nos permite trazar continuidades y discontinuidades entre los "principios de la disciplina" y "los castigos corporales" como antecedentes para los "tribunales infantiles", implementados en la Escuela Quintana de la Provincia de Mendoza, por Florencia Fossatti, en las primeras décadas del siglo XX.Fil: Alvarado, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentin

    Use of sonic tomography to detect and quantify wood decay in living trees.

    Get PDF
    Premise of the studyField methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes.Methods and resultsLiving trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness.ConclusionsSonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees

    The Search for Living Worlds and the Connection to Our Cosmic Origins

    No full text
    International audienceOne of the most exciting scientific challenges is to detect Earth-like planets in the habitable zones of other stars in the galaxy and search for evidence of life. The ability to observe and characterise dozens of potentially Earth-like planets now lies within the realm of possibility due to rapid advances in key space and imaging technologies. The associated challenge of directly imaging very faint planets in orbit around nearby very bright stars is now well understood, with the key instrumentation also being perfected and developed. Such advances will allow us to develop large transformative telescopes, covering a broad UV-optical-IR spectral range, which can carry out the detailed research programmes designed to answer the questions we wish to answer: Carry out high contrast imaging surveys of nearby stars to search for planets within their habitable zones. Characterise the planets detected to determine masses and radii from photometric measurements. Through spectroscopic studies of their atmospheres and surfaces, search for habitability indicators and for signs of an environment that has been modified by the presence of life. Active studies of potential missions have been underway for a number of years. The latest of these is the Large UV Optical IR space telescope (LUVOIR), one of four flagship mission studies commissioned by NASA in support of the 2020 US Decadal Survey. LUVOIR, if selected, will be of interest to a wide scientific community and will be the only telescope capable of searching for and characterizing a sufficient number of exoEarths to provide a meaningful answer to the question - Are we alone?. This paper is a submission to the European Space Agency Voyage 2050 call for white papers outlining the case for an ESA contribution to a Large UVOIR telescope

    The Search for Living Worlds and the Connection to Our Cosmic Origins

    No full text
    International audienceOne of the most exciting scientific challenges is to detect Earth-like planets in the habitable zones of other stars in the galaxy and search for evidence of life. The ability to observe and characterise dozens of potentially Earth-like planets now lies within the realm of possibility due to rapid advances in key space and imaging technologies. The associated challenge of directly imaging very faint planets in orbit around nearby very bright stars is now well understood, with the key instrumentation also being perfected and developed. Such advances will allow us to develop large transformative telescopes, covering a broad UV-optical-IR spectral range, which can carry out the detailed research programmes designed to answer the questions we wish to answer: Carry out high contrast imaging surveys of nearby stars to search for planets within their habitable zones. Characterise the planets detected to determine masses and radii from photometric measurements. Through spectroscopic studies of their atmospheres and surfaces, search for habitability indicators and for signs of an environment that has been modified by the presence of life. Active studies of potential missions have been underway for a number of years. The latest of these is the Large UV Optical IR space telescope (LUVOIR), one of four flagship mission studies commissioned by NASA in support of the 2020 US Decadal Survey. LUVOIR, if selected, will be of interest to a wide scientific community and will be the only telescope capable of searching for and characterizing a sufficient number of exoEarths to provide a meaningful answer to the question - Are we alone?. This paper is a submission to the European Space Agency Voyage 2050 call for white papers outlining the case for an ESA contribution to a Large UVOIR telescope

    Use of sonic tomography to detect and quantify wood decay in living trees

    No full text
    PREMISE OF THE STUDY: Field methodology and image analysis protocols using acoustic tomography were developed and evaluated as a tool to estimate the amount of internal decay and damage of living trees, with special attention to tropical rainforest trees with irregular trunk shapes. METHODS AND RESULTS: Living trunks of a diversity of tree species in tropical rainforests in the Republic of Panama were scanned using an Argus Electronic PiCUS 3 Sonic Tomograph and evaluated for the amount and patterns of internal decay. A protocol using ImageJ analysis software was used to quantify the proportions of intact and compromised wood. The protocols provide replicable estimates of internal decay and cavities for trees of varying shapes, wood density, and bark thickness. CONCLUSIONS: Sonic tomography, coupled with image analysis, provides an efficient, noninvasive approach to evaluate decay patterns and structural integrity of even irregularly shaped living trees
    corecore