198 research outputs found
The circadian syndrome predicts cardiovascular disease better than metabolic syndrome in Chinese adults
Background To compare the predictive value of the circadian syndrome (CircS) and Metabolic syndrome (MetS) for cardiovascular disease. Method We used the data of 9360 Chinese adults aged >= 40 years from the 2011 China Health and Retirement Longitudinal Study (CHARLS). Of the participants, 8253 people were followed in the 2015 survey. MetS was defined using the harmonized criteria. CircS was based on the components of the International Diabetes Federation (IDF) MetS plus short sleep and depression. The cut-off for CircS was set as >= 4. Multivariable logistic regression analysis was used to examine the associations. Results The prevalence of CircS and MetS was 39.0% and 44.7%. Both MetS and CircS were directly associated with prevalent CVD. The odds ratios for prevalent CVD comparing CircS with MetS, respectively, were 2.83 (95%CI 2.33-3.43) and 2.34 (1.93-2.83) in men, and 2.33 (1.98-2.73) and 1.79 (1.53-2.10) in women. Similar associations were found for incident CVD. The five-year incidence of CVD was 15.1% in CircS and 14.0% in MetS. The number of CircS components has a better predictive power for both prevalent and incident CVD than those of Mets components as indicated by the area under the ROC (AUC). AUC values for CVD in 2011 were higher for CircS than MetS in both men (0.659 (95%CI 0.634-0.684) vs 0.635 (95%CI 0.610-0.661)) and women (0.652 (95%CI 0.632-0.672) vs 0.619 (95%CI 0.599-0.640)). Conclusion The circadian syndrome is a strong and better predictor for CVD than the metabolic syndrome in Chinese adults.Peer reviewe
Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways
Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action11CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP304668/2014-12010/50015-6; 2012/03238-5; 2014/10198-5; 2015/10356-2NHMRC; International Joint Program. Professor Sam El-Osta is a National Health and Medical Research Council; Senior Research Fello
Microparticles: major transport vehicles for distinct microRNAs in circulation
AIMS: Circulating microRNAs (miRNAs) have attracted major interest as biomarkers for cardiovascular diseases. Since RNases are abundant in circulating blood, there needs to be a mechanism protecting miRNAs from degradation. We hypothesized that microparticles (MP) represent protective transport vehicles for miRNAs and that these are specifically packaged by their maternal cells. METHODS AND RESULTS: Conventional plasma preparations, such as the ones used for biomarker detection, are shown to contain substantial numbers of platelet-, leucocyte-, and endothelial cell-derived MP. To analyse the widest spectrum of miRNAs, Next Generation Sequencing was used to assess miRNA profiles of MP and their corresponding stimulated and non-stimulated cells of origin. THP-1 (monocytic origin) and human umbilical vein endothelial cell (HUVEC) MP were used for representing circulating MP at a high purity. miRNA profiles of MP differed significantly from those of stimulated and non-stimulated maternal THP-1 cells and HUVECs, respectively. Quantitative reverse transcription-polymerase chain reaction of miRNAs which have been associated with cardiovascular diseases also demonstrated significant differences in miRNA profiles between platelets and their MP. Notably, the main fraction of miRNA in plasma was localized in MP. Furthermore, miRNA profiles of MP differed significantly between patients with stable and unstable coronary artery disease. CONCLUSION: Circulating MP represent transport vehicles for large numbers of specific miRNAs, which have been associated with cardiovascular diseases. miRNA profiles of MP are significantly different from their maternal cells, indicating an active mechanism of selective 'packaging' from cells into MP. These findings describe an interesting mechanism for transferring gene-regulatory function from MP-releasing cells to target cells via MP circulating in blood
The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model
Tumour drug-resistant ABCB1 gene expression is regulated at the chromatin level through epigenetic mechanisms. We examined the effects of the histone deacetylase inhibitor trichostatin A (TSA) on ABCB1 gene expression in small cell lung carcinoma (SCLC) drug-sensitive (H69WT) or etoposide-resistant (H69VP) cells. We found that TSA induced an increase in ABCB1 expression in drug-sensitive cells, but strongly decreased it in drug-resistant cells. These up- and downregulations occurred at the transcriptional level. Protein synthesis inhibition reduced these modulations, but did not completely suppress them. Differential temporal patterns of histone acetylation were observed at the ABCB1 promoter: increase in H4 acetylation in both cell lines, but different H3 acetylation with a progressive increase in H69WT cells but a transient one in H69VP cells. ABCB1 regulations were not related with the methylation status of the promoter −50GC, −110GC, and Inr sites, and did not result in further changes to these methylation profiles. Trichostatin A treatment did not modify MBD1 binding to the ABCB1 promoter and similarly increased PCAF binding in both H69 cell lines. Our results suggest that in H69 drug-resistant SCLC cell line TSA induces downregulation of ABCB1 expression through a transcriptional mechanism, independently of promoter methylation, and MBD1 or PCAF recruitment
A New Perspective on Transcriptional System Regulation (TSR): Towards TSR Profiling
It has been hypothesized that the net expression of a gene is determined by the combined effects of various transcriptional system regulators (TSRs). However, characterizing the complexity of regulation of the transcriptome is a major challenge. Principal component analysis on 17,550 heterogeneous human microarray experiments revealed that 50 orthogonal factors (hereafter called TSRs) are able to capture 64% of the variability in expression in a wide range of experimental conditions and tissues. We identified gene clusters controlled in the same direction and show that gene expression can be conceptualized as a process influenced by a fairly limited set of TSRs. Furthermore, TSRs can be linked to biological functions, as we demonstrate a strong relation between TSR-related gene clusters and biological functionality as well as cellular localization, i.e. gene products of similarly regulated genes by a specific TSR are located in identical parts of a cell. Using 3,934 diverse mouse microarray experiments we found striking similarities in transcriptional system regulation between human and mouse. Our results give biological insights into regulation of the cellular transcriptome and provide a tool to characterize expression profiles with highly reliable TSRs instead of thousands of individual genes, leading to a >500-fold reduction of complexity with just 50 TSRs. This might open new avenues for those performing gene expression profiling studies
Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo
Dorsal/ventral patterning of the sea urchin embryo depends upon the establishment of a Nodal-expressing ventral organizer. Recently, we showed that spatial positioning of this organizer relies on the dorsal-specific transcription of the Hbox12 repressor. Building on these findings, we determined the influence of the epigenetic milieu on the expression of hbox12 and nodal genes. We find that Trichostatin-A, a potent and selective histone-deacetylases inhibitor, induces histone hyperacetylation in hbox12 chromatin, evoking broad ectopic expression of the gene. Transcription of nodal concomitantly drops, prejudicing dorsal/ventral polarity of the resulting larvae. Remarkably, impairing hbox12 function, either in a spatially-restricted sector or in the whole embryo, specifically rescues nodal transcription in Trichostatin-A-treated larvae. Beyond strengthen the notion that nodal expression is not allowed in the presence of functional Hbox12 in the same cells, these results highlight a critical role of histone deacetylases in regulating the spatial expression of hbox12
Role of IL-1 Beta in the Development of Human TH17 Cells: Lesson from NLPR3 Mutated Patients
T helper 17 cells (T(H)-17) represent a lineage of effector T cells critical in host defence and autoimmunity. In both mouse and human IL-1β has been indicated as a key cytokine for the commitment to T(H)-17 cells. Cryopyrin-associated periodic syndromes (CAPS) are a group of inflammatory diseases associated with mutations of the NLRP3 gene encoding the inflammasome component cryopyrin. In this work we asked whether the deregulated secretion of IL-1β secondary to mutations characterizing these patients could affect the IL-23/IL-17 axis.A total of 11 CAPS, 26 systemic onset juvenile idiopathic arthritis (SoJIA) patients and 20 healthy controls were analyzed. Serum levels of IL-17 and IL-6 serum were assessed by ELISA assay. Frequency of T(H)17 cells was quantified upon staphylococcus enterotoxin B (SEB) stimulation. Secretion of IL-1β, IL-23 and IL-6 by monocyte derived dendritic cells (MoDCs), were quantified by ELISA assay. A total of 8 CAPS and 11 SoJIA patients were also analysed before and after treatment with IL-1β blockade. Untreated CAPS patients showed significantly increased IL-17 serum levels as well as a higher frequency of T(H)17 compared to control subjects. On the contrary, SoJIA patients displayed a frequency of T(H)17 similar to normal donors, but were found to have significantly increased serum level of IL-6 when compared to CAPS patients or healthy donors. Remarkably, decreased IL-17 serum levels and T(H)17 frequency were observed in CAPS patients following in vivo IL-1β blockade. On the same line, MoDCs from CAPS patients exhibited enhanced secretion of IL-1β and IL-23 upon TLRs stimulation, with a reduction after anti-IL-1 treatment.These findings further support the central role of IL-1β in the differentiation of T(H)17 in human inflammatory conditions
- …