1,879 research outputs found

    Stable marked point processes

    Full text link
    In many contexts such as queuing theory, spatial statistics, geostatistics and meteorology, data are observed at irregular spatial positions. One model of this situation involves considering the observation points as generated by a Poisson process. Under this assumption, we study the limit behavior of the partial sums of the marked point process {(ti,X(ti))}\{(t_i,X(t_i))\}, where X(t) is a stationary random field and the points t_i are generated from an independent Poisson random measure N\mathbb{N} on Rd\mathbb{R}^d. We define the sample mean and sample variance statistics and determine their joint asymptotic behavior in a heavy-tailed setting, thus extending some finite variance results of Karr [Adv. in Appl. Probab. 18 (1986) 406--422]. New results on subsampling in the context of a marked point process are also presented, with the application of forming a confidence interval for the unknown mean under an unknown degree of heavy tails.Comment: Published at http://dx.doi.org/10.1214/009053606000001163 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computer-intensive rate estimation, diverging statistics and scanning

    Full text link
    A general rate estimation method is proposed that is based on studying the in-sample evolution of appropriately chosen diverging/converging statistics. The proposed rate estimators are based on simple least squares arguments, and are shown to be accurate in a very general setting without requiring the choice of a tuning parameter. The notion of scanning is introduced with the purpose of extracting useful subsamples of the data series; the proposed rate estimation method is applied to different scans, and the resulting estimators are then combined to improve accuracy. Applications to heavy tail index estimation as well as to the problem of estimating the long memory parameter are discussed; a small simulation study complements our theoretical results.Comment: Published in at http://dx.doi.org/10.1214/009053607000000064 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore