1,842 research outputs found

    Calculation of the Density of States Using Discrete Variable Representation and Toeplitz Matrices

    Full text link
    A direct and exact method for calculating the density of states for systems with localized potentials is presented. The method is based on explicit inversion of the operator EHE-H. The operator is written in the discrete variable representation of the Hamiltonian, and the Toeplitz property of the asymptotic part of the obtained {\it infinite} matrix is used. Thus, the problem is reduced to the inversion of a {\it finite} matrix

    Two-Center Integrals for r_{ij}^{n} Polynomial Correlated Wave Functions

    Full text link
    All integrals needed to evaluate the correlated wave functions with polynomial terms of inter-electronic distance are included. For this form of the wave function, the integrals needed can be expressed as a product of integrals involving at most four electrons

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten

    Adrenal Dysfunction in Hemodynamically Unstable Patients in the Emergency Department

    Full text link
    Objective: Adrenal failure, a treatable condition, can have catastrophic consequences if unrecognized in critically ill ED patients. The authors' objective was to prospectively study adrenal function in a case series of hemodynamically unstable (high-risk) patients from a large, urban ED over a 12-month period. Methods: In a prospective manner, critically ill adult patients presenting to the ED were enrolled when presenting with a mean arterial blood pressure ≤60 mm Hg requiring vasopressor therapy for more than one hour after receiving fluid resuscitation (central venous pressure of 12-15 mm Hg or a minimum of 40 mL/kg of crystalloid). Patients were excluded if presenting with hemorrhage, trauma, or AIDS, or if steroids were used within the previous six months. An adrenocorticotropic hormone (ACTH) stimulation test was performed and serum cortisol was measured. Treatment for adrenal insufficiency was not instituted. Results: A total of 57 consecutive patients were studied. Of these, eight (14%) had baseline serum cortisol concentrations of <20 Μg/dL (<552 nmol/L), which was considered adrenal insufficiency (AI). Three additional patients (5%) had subnormal 60-minute post-ACTH-stimulation cortisol responses (<30 Μg/dL) and a delta cortisol ≤9 Μg/dL, which is the difference between the baseline and 60-minute levels. This is functional hypoadrenalism (FH). There were no laboratory abnormalities that distinguished patients with AI or FH from those with preserved adrenal function (PAF). Rates of survival to discharge did not differ between the AI group (7 of 8) and PAF patients (21 of 46; p = 0.052). Conclusions: Adrenal dysfunction is common in high-risk ED patients. Overall, it has a frequency of 19% among a homogeneous population of hemodynamically unstable vasopressor-dependent patients. The effect of physiologic glucocorticoid replacement in this setting remains to be determined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71956/1/j.1553-2712.1999.tb00417.x.pd

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).

    The perils of project-based work: Attempting resistance to extreme work practices in video game development

    Get PDF
    This article examines two blogs written by the spouses of game developers about extreme and exploitative working conditions in the video game industry and the associated reader comments. The wives of these video game developers and members of the game community decry these working conditions and challenge dominant ideologies about making games. This article contributes to the work intensification literature by challenging the belief that long hours are necessary and inevitable to make successful games, discussing the negative toll of extreme work on workers and their families, and by highlighting that the project-based structure of game development both creates extreme work conditions and inhibits resistance. It considers how extreme work practices are legitimized through neo-normative control mechanisms made possible through project-based work structures and the perceived imperative of a race or ‘crunch’ to meet project deadlines. The findings show that neo-normative control mechanisms create an insularity within project teams and can make it difficult for workers to resist their own extreme working conditions, and at times to even understand them as extreme

    Minimal influence of the menstrual cycle or hormonal contraceptives on performance in female rugby league athletes

    Get PDF
    We examined performance across one menstrual cycle (MC) and 3 weeks of hormonal contraceptives (HC) use to identify whether known fluctuations in estrogen and progesterone/progestin are associated with functional performance changes. National Rugby League Indigenous Women's Academy athletes [n = 11 naturally menstruating (NM), n = 13 using HC] completed performance tests [countermovement jump (CMJ), squat jump (SJ), isometric mid‐thigh pull, 20 m sprint, power pass and Stroop test] during three phases of a MC or three weeks of HC usage, confirmed through ovulation tests alongside serum estrogen and progesterone concentrations. MC phase or HC use did not influence jump height, peak force, sprint time, distance thrown or Stroop effect. However, there were small variations in kinetic and kinematic CMJ/SJ outputs. NM athletes produced greater mean concentric power in MC phase four than one [+0.41 W·kg−1 (+16.8%), p = 0.021] during the CMJ, alongside greater impulse at 50 ms at phase one than four [+1.7 N·s (+4.7%), p = 0.031] during the SJ, without differences between tests for HC users. Among NM athletes, estradiol negatively correlated with mean velocity and power (r = −0.44 to −0.50, p &lt; 0.047), progesterone positively correlated with contraction time (r = 0.45, p = 0.045), and both negatively correlated with the rate of force development and impulse (r = −0.45 to −0.64, p &lt; 0.043) during the SJ. During the CMJ, estradiol positively correlated to 200 ms impulse (r = 0.45, p = 0.049) and progesterone to mean power (r = 0.51, p = 0.021). Evidence of changes in testing performance across a MC, or during active HC use, is insufficient to justify “phase‐based testing”; however, kinetic or kinematic outputs may be altered in NM athletes

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.

    A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Integration of a Scanning Electron Microscope with a Transition-Edge Sensor Spectrometer

    Full text link
    X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but is difficult to implement due to competing requirements on X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. Compact X-ray nanotomography tools operated in standard analysis laboratories exist, but are limited by X-ray optics and destructive sample preparation techniques. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while changing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot in a metal target, while the TES spectrometer isolates target photons with high signal-to-noise. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enable nanoscale, element-specific X-ray imaging in a compact footprint. The proof-of-concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in a Cu-SiO2 integrated circuit, and a path towards finer resolution and enhanced imaging capabilities is discussed.Comment: The following article has been submitted to Physical Review Applie
    corecore