179 research outputs found

    Theory of magnetic excitons in the heavy-fermion superconductor UPd2Al3UPd_{2}Al_{3}

    Full text link
    We analyze the influence of unconventional superconductivity on the magnetic excitations in the heavy fermion compound UPd2_2Al3_3. We show that it leads to the formation of a bound state at energies well below 2Δ0\Delta_0 at the antiferromagnetic wave vector {\textbf Q}=(0,0,π/c)(0,0,\pi/c). Its signature is a resonance peak in the spectrum of magnetic excitations in good agreement with results from inelastic neutron scattering. Furthermore we investigate the influence of antiferromagnetic order on the formation of the resonance peak. We find that its intensity is enhanced due to intraband transitions induced by the reconstruction of Fermi surface sheets. We determine the dispersion of the resonance peak near {\textbf Q} and show that it is dominated by the magnetic exciton dispersion associated with local moments. We demonstrate by a microscopic calculation that UPd2_2Al3_3 is another example in which the unconventional nature of the superconducting order parameter can be probed by means of inelastic neutron scattering and determined unambiguously.Comment: 6 pages, 4 figure

    A theory of the electric quadrupole contribution to resonant x-ray scattering: Application to multipole ordering phases in Ce_{1-x}La_{x}B_{6}

    Full text link
    We study the electric quadrupole (E2) contribution to resonant x-ray scattering (RXS). Under the assumption that the rotational invariance is preserved in the Hamiltonian describing the intermediate state of scattering, we derive a useful expression for the RXS amplitude. One of the advantages the derived expression possesses is the full information of the energy dependence, lacking in all the previous studies using the fast collision approximation. The expression is also helpful to classify the spectra into multipole order parameters which are brought about. The expression is suitable to investigate the RXS spectra in the localized f electron systems. We demonstrate the usefulness of the formula by calculating the RXS spectra at the Ce L_{2,3} edges in Ce_{1-x}La_{x}B_{6} on the basis of the formula. We obtain the spectra as a function of energy in agreement with the experiment of Ce_{0.7}La_{0.3}B_{6}. Analyzing the azimuthal angle dependence, we find the sixfold symmetry in the \sigma-\sigma' channel and the threefold onein the \sigma-\pi' channel not only in the antiferrooctupole (AFO) ordering phase but also in the antiferroquadrupole (AFQ) ordering phase, which behavior depends strongly on the domain distribution. The sixfold symmetry in the AFQ phase arises from the simultaneously induced hexadecapole order. Although the AFO order is plausible for phase IV in Ce_{1-x}La_{x}B_{6}, the possibility of the AFQ order may not be ruled out on the basis of azimuthal angle dependence alone.Comment: 12 pages, 6 figure

    Pressure Induced Changes in the Antiferromagnetic Superconductor YbPd2Sn

    Get PDF
    Low temperature ac magnetic susceptibility measurements of the coexistent antiferromagnetic superconductor YbPd2Sn have been made in hydrostatic pressures < 74 kbar in moissanite anvil cells. The superconducting transition temperature is forced to T(SC) = 0 K at a pressure of 58 kbar. The initial suppression of the superconducting transition temperature is corroborated by lower hydrostatic pressure (p < 16 kbar) four point resisitivity measurements, made in a piston cylinder pressure cell. At ambient pressure, in a modest magnetic field of ~ 500 G, this compound displays reentrant superconducting behaviour. This reentrant superconductivity is suppressed to lower temperature and lower magnetic field as pressure is increased. The antiferromagnetic ordering temperature, which was measured at T(N) = 0.12 K at ambient pressure is enhanced, to reach T(N) = 0.58 K at p = 74 kbar. The reasons for the coexistence of superconductivity and antiferromagnetism is discussed in the light of these and previous findings. Also considered is why superconductivity on the border of long range magnetic order is so much rarer in Yb compounds than in Ce compounds. The presence of a new transition visible by ac magnetic susceptibility under pressure and in magnetic fields greater than 1.5 kG is suggested.Comment: 5 pages, 6 figure

    The dual nature of 5f electrons and origin of heavy fermions in U compounds

    Full text link
    We develop a theory for the electronic excitations in UPt3_3 which is based on the localization of two of the 5f5f electrons. The remaining ff electron is delocalized and acquires a large effective mass by inducing intra-atomic excitations of the localized ones. The measured deHaas-vanAlphen frequencies of the heavy quasiparticles are explained as well as their anisotropic heavy mass. A model calculation for a small cluster reveals why only the largest of the different 5f5f hopping matrix elements is operative causing the electrons in other orbitals to localize.Comment: 6 pages, 3 figure

    Pressure dependence of the magnetization of URu2Si2

    Full text link
    The ground state of URu2Si2 changes from so-called hidden order (HO) to large-moment antiferromagnetism (LMAF) upon applying hydrostatic pressure in excess of 14 kbar. We report the dc-magnetization M(B,T,p) of URu2Si2 for magnetic fields B up to 12 T, temperatures T in the range 2 to 100 K, and pressure p up to 17 kbar. Remarkably, characteristic scales such as the coherence temperature T*, the transition temperature T0, and the anisotropy in the magnetization depend only weakly on the applied pressure. However, the discontinuity in dM/dT at T0, which measures the magnetocaloric effect, decreases nearly 50 % upon applying 17 kbar for M and B parallel to the tetragonal c-axis, while it increases 15-fold for the a-axis. Our findings suggest that the HO and LMAF phases have an astonishing degree of similarity in their physical properties, but a key difference is the magnetocaloric effect near T0 in the basal plane

    Electronic structure theory of the hidden order material URu2_2Si2_2

    Get PDF
    We report a comprehensive electronic structure investigation of the paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden order (HO) phases of URu2_2Si2_2. We have performed relativistic full-potential calculations on the basis of the density functional theory (DFT), employing different exchange-correlation functionals to treat electron correlations within the open 5f5f-shell of uranium. Specifically, we investigate---through a comparison between calculated and low-temperature experimental properties---whether the 5f5f electrons are localized or delocalized in URu2_2Si2_2. We also performed dynamical mean field theory calculations (LDA+DMFT) to investigate the temperature evolution of the quasi-particle states at 100~K and above, unveiling a progressive opening of a quasi-particle gap at the chemical potential when temperature is reduced. A detailed comparison of calculated properties with known experimental data demonstrates that the LSDA and GGA approaches, in which the uranium 5f5f electrons are treated as itinerant, provide an excellent explanation of the available low-temperature experimental data of the PM and LMAF phases. We show furthermore that due to a materials-specific Fermi surface instability a large, but partial, Fermi surface gapping of up to 750 K occurs upon antiferromagnetic symmetry breaking. The occurrence of the HO phase is explained through dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic spin-fluctuations. This dynamical symmetry breaking model explains why the Fermi surface gapping in the HO phase is similar but smaller than that in the LMAF phase and it also explains why the HO and LMAF phases have the same Fermi surfaces yet different order parameters. Suitable derived order parameters for the HO are proposed to be the Fermi surface gap or the dynamic spin-spin correlation function.Comment: 23 pages, 20 figure

    Superconductivity induced by spark erosion in ZrZn2

    Full text link
    We show that the superconductivity observed recently in the weak itinerant ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due to remnants of a superconducting layer induced by spark erosion. Results of resistivity, susceptibility, specific heat and surface analysis measurements on high-quality ZrZn2 crystals show that cutting by spark erosion leaves a superconducting surface layer. The resistive superconducting transition is destroyed by chemically etching a layer of 5 microns from the sample. No signature of superconductivity is observed in rho(T) of etched samples at the lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis shows that spark-eroded surfaces are strongly Zn depleted. The simplest explanation of our results is that the superconductivity results from an alloy with higher Zr content than ZrZn2.Comment: Final published versio

    Superconducting transition temperatures and coherence length in non s-wave pairing materials correlated with spin-fluctuation mediated interaction

    Full text link
    Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non s-wave pairing materials, with coherence length xi and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14598 (1999)] have each focussed on the concept of a spin-fluctuation temperature T_sf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that k_B T_sf ~ hbar^2 / m* xi^2. This demonstrates that xi is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely: the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-2D ruthenate Sr_2RuO_4, with Tc ~ 1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.Comment: Accepted for publication in Phys. Rev.
    • …
    corecore