2,857 research outputs found
Heavy-flavour and quarkonium measurements in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV with ALICE
International audienceWe report on the latest results on heavy-flavour and J/ production at both midrapidity and forward rapidity, in Pb-Pb collisions at sqrt (sNN) = 2.76 TeV, measured with the ALICE experiment at the LHC. We present measurements of the nuclear modification factor for open heavy-flavours and J/psi and compare these results to model predictions. Preliminary results on the elliptic flow of D mesons and J/psi are discussed
D meson nuclear modification factors in Pb-Pb collisions at {\surd}sNN = 2.76 TeV, measured with the ALICE detector
The ALICE experiment has measured the D meson production in pp and Pb-Pb
collisions at the LHC at {\surd}s = 7 and 2.76 TeV and {\surd}sNN = 2.76 TeV
respectively, via the exclusive reconstruction of hadronic decay channels. The
analyses of the D0{\to}K-pi+ and D+{\to}K-pi+pi+ channels will be described and
the preliminary results for the D0 and D+ nuclear modification factor will be
presented.Comment: Proceedings of Quark Matter 2011 conference. 4 pages, 4 figures. The
slides of the talk can be found at the link:
http://indico.cern.ch/materialDisplay.py?contribId=591&sessionId=53&materialId=slides&confId=3024
Heavy-flavour production in Pb-Pb collisions at the LHC, measured with the ALICE detector
We present the first results from the ALICE experiment on the nuclear
modification factors for heavy-flavour hadron production in Pb-Pb collisions at
sqrt{s_NN}=2.76 TeV. Using proton-proton and lead-lead collision samples at
sqrt{s}=7 TeV and sqrt{s_NN}=2.76 TeV, respectively, nuclear modification
factors R_AA(pt) were measured for D mesons at central rapidity (via displaced
decay vertex reconstruction), and for electrons and muons, at central and
forward rapidity, respectively.Comment: 8 pages, 5 figures, plenary talk at Quark Matter 2011, Annecy, Franc
Flow angle from intermediate mass fragment measurements
Directed sideward flow of light charged particles and intermediate mass
fragments was measured in different symmetric reactions at bombarding energies
from 90 to 800 AMeV. The flow parameter is found to increase with the charge of
the detected fragment up to Z = 3-4 and then turns into saturation for heavier
fragments. Guided by simple simulations of an anisotropic expanding thermal
source, we show that the value at saturation can provide a good estimate of the
flow angle, , in the participant region. It is found that
depends strongly on the impact parameter. The excitation
function of reveals striking deviations from the ideal
hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a
maximum at around 250-400 AMeV, followed by a moderate decrease as the
bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.
Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state
We present measurements of the excitation function of elliptic flow at
midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per
nucleon. For the integral flow, we discuss the interplay between collective
expansion and spectator shadowing for three centrality classes. A complete
excitation function of transverse momentum dependence of elliptic flow is
presented for the first time in this energy range, revealing a rapid change
with incident energy below 0.4 AGeV, followed by an almost perfect scaling at
the higher energies. The equation of state of compressed nuclear matter is
addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will
be available at http://www.gsi.de/~fopiwww/pub
Isospin dependence of relative yields of and mesons at 1.528 AGeV
Results on and meson production in Ru +
Ru and Zr + Zr collisions at a beam kinetic
energy of 1.528 GeV, measured with the FOPI detector at GSI-Darmstadt, are
investigated as a possible probe of isospin effects in high density nuclear
matter. The measured double ratio ()/() is
compared to the predictions of a thermal model and a Relativistic Mean Field
transport model using two different collision scenarios and under different
assumptions on the stiffness of the symmetry energy. We find a good agreement
with the thermal model prediction and the assumption of a soft symmetry energy
for infinite nuclear matter while more realistic transport simulations of the
collisions show a similar agreement with the data but also exhibit a reduced
sensitivity to the symmetry term.Comment: 5 pages, 3 figures. accepted for publication in Phys. Rev.
Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study
Small-angle correlations of pairs of protons emitted in central collisions of
Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon
are investigated with the FOPI detector system at SIS/GSI Darmstadt.
Dependences on system size and beam energy are presented which extend the
experimental data basis of pp correlations in the SIS energy range
substantially. The size of the proton-emitting source is estimated by comparing
the experimental data with the output of a final-state interaction model which
utilizes either static Gaussian sources or the one-body phase-space
distribution of protons provided by the BUU transport approach. The trends in
the experimental data, i.e. system-size and beam energy dependences, are well
reproduced by this hybrid model. However, the pp correlation function is found
rather insensitive to the stiffness of the equation of state entering the
transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.
Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions
The incident energy at which the azimuthal distributions in semi-central
heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran,
is studied as a function of mass of emitted particles, their transverse
momentum and centrality for Au+Au collisions. The analysis is performed in a
reference frame rotated with the sidewards flow angle, Theta_flow, relative to
the beam axis. A systematic decrease of E_tran as function of mass of the
reaction products, their transverse momentum and collision centrality is
evidenced. The predictions of a microscopic transport model (IQMD) are compared
with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl.
Phys.
- …