353 research outputs found

    Experimental Electronic Structure and Interband Nesting in BaVS_3

    Get PDF
    The correlated 3d sulphide BaVS_3 is a most interesting compound because of the apparent coexistence of one-dimensional and three-dimensional properties. Our experiments explain this puzzle and shed new light on its electronic structure. High-resolution angle-resolved photoemission measurements in a 4eV wide range below the Fermi level explored the coexistence of weakly correlated a_1g wide-band and strongly correlated e_g narrow-band d-electrons that is responsible for the complicated behavior of this material. The most relevant result is the evidence for a_1g--e_g inter-band nesting condition.Comment: 4 pages, 3 figure

    Optical evidence for the proximity to a spin-density-wave metallic state in Na0.7_{0.7}CoO2_2

    Full text link
    We present the optical properties of \na single crystals, measured over a broad spectral range as a function of temperature (TT). The capability to cover the energy range from the far-infrared up to the ultraviolet allows us to perform reliable Kramers-Kronig transformation, in order to obtain the absorption spectrum (i.e., the complex optical conductivity). To the complex optical conductivity we apply the generalized Drude model, extracting the frequency dependence of the scattering rate (Γ\Gamma) and effective mass (mm^*) of the itinerant charge carriers. We find that Γ(ω)ω\Gamma(\omega)\sim \omega at low temperatures and for ω>T\omega > T. This suggests that \na is at the verge of a spin-density-wave metallic phase

    Modeling time delay in the NFκB signaling pathway following low dose IL-1 stimulation

    Get PDF
    Stimulation of human epithelial cells with IL-1 (10 ng/ml) + UVB radiation results in sustained NFκB activation caused by continuous IKKβ phosphorylation. We have recently published a strictly reduced ordinary differential equation model elucidating the involved mechanisms. Here, we compare model extensions for low IL-1 doses (0.5 ng/ml), where delayed IKKβ phosphorylation is observed. The extended model including a positive regulatory element, most likely auto-ubiquitination of TRAF6, reproduces the observed experimental data most convincingly. The extension is shown to be consistent with the original model and contains very sensitive processes which may serve as potential intervention targets

    Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa2CuO4+d: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor

    Full text link
    Charge density-wave order has been observed in cuprate superconductors whose crystal structure breaks the square symmetry of the CuO2 planes, such as orthorhombic YBa2Cu3Oy (YBCO), but not so far in cuprates that preserve that symmetry, such as tetragonal HgBa2CuO4+d (Hg1201). We have measured the Hall (R_H), Seebeck (S), and Nernst coefficients of underdoped Hg1201 in magnetic fields large enough to suppress superconductivity. The high-field R_H(T) and S(T) are found to drop with decreasing temperature and become negative, as also observed in YBCO at comparable doping. In YBCO, the negative R_H and S are signatures of a small electron pocket caused by Fermi-surface reconstruction, attributed to charge density-wave modulations observed in the same range of doping and temperature. We deduce that a similar Fermi-surface reconstruction takes place in Hg1201, evidence that density-wave order exists in this material. A striking similarity is also found in the normal-state Nernst coefficient, further supporting this interpretation. Given the model nature of Hg1201, Fermi-surface reconstruction appears to be common to all hole-doped cuprates, suggesting that density-wave order is a fundamental property of these materials

    Two Ising-like magnetic excitations in a single-layer cuprate superconductor

    Full text link
    There exists increasing evidence that the phase diagram of the high-transition temperature (Tc) cuprate superconductors is controlled by a quantum critical point. One distinct theoretical proposal is that, with decreasing hole-carrier concentration, a transition occurs to an ordered state with two circulating orbital currents per CuO2 square. Below the 'pseudogap' temperature T* (T* > Tc), the theory predicts a discrete order parameter and two weakly-dispersive magnetic excitations in structurally simple compounds that should be measurable by neutron scattering. Indeed, novel magnetic order and one such excitation were recently observed. Here, we demonstrate for tetragonal HgBa2CuO4+d the existence of a second excitation with local character, consistent with the theory. The excitations mix with conventional antiferromagnetic fluctuations, which points toward a unifying picture of magnetism in the cuprates that will likely require a multi-band description.Comment: Including supplementary informatio
    corecore