2,289 research outputs found
Spatially inhomogeneous condensate in asymmetric nuclear matter
We study the isospin singlet pairing in asymmetric nuclear matter with
nonzero total momentum of the condensate Cooper pairs. The quasiparticle
excitation spectrum is fourfold split compared to the usual BCS spectrum of the
symmetric, homogeneous matter. A twofold splitting of the spectrum into
separate branches is due to the finite momentum of the condensate, the isospin
asymmetry, or the finite quasiparticle lifetime. The coupling of the isospin
singlet and triplet paired states leads to further twofold splitting of each of
these branches. We solve the gap equation numerically in the isospin singlet
channel in the case where the pairing in the isospin triplet channel is
neglected and find nontrivial solutions with finite total momentum of the
pairs. The corresponding phase assumes a periodic spatial structure which
carries a isospin density wave at constant total number of particles. The phase
transition from the BCS to the inhomogeneous superconducting phase is found to
be first order and occurs when the density asymmetry is increased above 0.25.
The transition from the inhomogeneous superconducting to the unpaired normal
state is second order. The maximal values of the critical total momentum (in
units of the Fermi momentum) and the critical density asymmetry at which
condensate disappears are and . The possible
spatial forms of the ground state of the inhomogeneous superconducting phase
are briefly discussed.Comment: 13 pages, including 3 figues, uses RevTeX; minor corrections, PRC in
pres
The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter
Nucleon selfenergies and spectral functions are calculated at the saturation
density of symmetric nuclear matter at finite temperatures. In particular, the
behaviour of these quantities at temperatures above and close to the critical
temperature for the superfluid phase transition in nuclear matter is discussed.
It is shown how the singularity in the thermodynamic T-matrix at the critical
temperature for superfluidity (Thouless criterion) reflects in the selfenergy
and correspondingly in the spectral function. The real part of the on-shell
selfenergy (optical potential) shows an anomalous behaviour for momenta near
the Fermi momentum and temperatures close to the critical temperature related
to the pairing singularity in the imaginary part. For comparison the selfenergy
derived from the K-matrix of Brueckner theory is also calculated. It is found,
that there is no pairing singularity in the imaginary part of the selfenergy in
this case, which is due to the neglect of hole-hole scattering in the K-matrix.
From the selfenergy the spectral function and the occupation numbers for finite
temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses
prc.sty, aps.sty, revtex.sty, psfig.sty (last included
Finding and counting vertex-colored subtrees
The problems studied in this article originate from the Graph Motif problem
introduced by Lacroix et al. in the context of biological networks. The problem
is to decide if a vertex-colored graph has a connected subgraph whose colors
equal a given multiset of colors . It is a graph pattern-matching problem
variant, where the structure of the occurrence of the pattern is not of
interest but the only requirement is the connectedness. Using an algebraic
framework recently introduced by Koutis et al., we obtain new FPT algorithms
for Graph Motif and variants, with improved running times. We also obtain
results on the counting versions of this problem, proving that the counting
problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two
colors. Finally, we present an experimental evaluation of this approach on real
datasets, showing that its performance compares favorably with existing
software.Comment: Conference version in International Symposium on Mathematical
Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal
Version in Algorithmic
How native state topology affects the folding of Dihydrofolate Reductase and Interleukin-1beta
The overall structure of the transition state and intermediate ensembles
experimentally observed for Dihydrofolate Reductase and Interleukin-1beta can
be obtained utilizing simplified models which have almost no energetic
frustration. The predictive power of these models suggest that, even for these
very large proteins with completely different folding mechanisms and functions,
real protein sequences are sufficiently well designed and much of the
structural heterogeneity observed in the intermediates and the transition state
ensembles is determined by topological effects.Comment: Proc. Natl. Acad. Sci. USA, in press (11 pages, 4 color PS figures)
Higher resolution PS files can be found at
http://www-physics.ucsd.edu/~cecilia/pub_list.htm
Scaling of Self-Avoiding Walks in High Dimensions
We examine self-avoiding walks in dimensions 4 to 8 using high-precision
Monte-Carlo simulations up to length N=16384, providing the first such results
in dimensions on which we concentrate our analysis. We analyse the
scaling behaviour of the partition function and the statistics of
nearest-neighbour contacts, as well as the average geometric size of the walks,
and compare our results to -expansions and to excellent rigorous bounds
that exist. In particular, we obtain precise values for the connective
constants, , , ,
and give a revised estimate of . All of
these are by at least one order of magnitude more accurate than those
previously given (from other approaches in and all approaches in ).
Our results are consistent with most theoretical predictions, though in
we find clear evidence of anomalous -corrections for the scaling of
the geometric size of the walks, which we understand as a non-analytic
correction to scaling of the general form (not present in pure
Gaussian random walks).Comment: 14 pages, 2 figure
Wellbeing and HCI in later life – what matters?
As part of the Challenging Obstacles and Barriers to Assisted Living Technologies (COBALT) project, we developed the COBALT Tools for EngagementTM, a number of innovative techniques to engage older people in all stages of technology development process. In the present study we used Technology Tours of the homes of eight older adults to look at their daily usage and examine the ways in which tech-nology influences well-being. All of the participants use multiple tech-nologies every day both inside the home and out. The data highlighted how technology contributes to well-being in a number of ways, includ-ing enabling them to maintain current activities; providing a means of staying in touch with families and friends; being easy to access and learn to use; and enhancing their lives. These can be divided into two types of factors: ones that relate to the direct outcomes of technology use and how these contribute to feelings of wellbeing and factors that relate to meeting an individual’s needs, which if met contribute to their well-being. The findings indicate that well-being is a multi-faceted con-struct that includes autonomy, i.e. remaining independent, competence both in continuing to complete activities and learning new ones, and communication with other people. The study also indicates that Tech-nology Tours provide an easily applicable and accessible means for en-abling older adults to speak as ‘experts’ on technology
Towards a fully self-consistent spectral function of the nucleon in nuclear matter
We present a calculation of nuclear matter which goes beyond the usual
quasi-particle approximation in that it includes part of the off-shell
dependence of the self-energy in the self-consistent solution of the
single-particle spectrum. The spectral function is separated in contributions
for energies above and below the chemical potential. For holes we approximate
the spectral function for energies below the chemical potential by a
-function at the quasi-particle peak and retain the standard form for
energies above the chemical potential. For particles a similar procedure is
followed. The approximated spectral function is consistently used at all levels
of the calculation. Results for a model calculation are presented, the main
conclusion is that although several observables are affected by the inclusion
of the continuum contributions the physical consistency of the model does not
improve with the improved self-consistency of the solution method. This in
contrast to expectations based on the crucial role of self-consistency in the
proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.
The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model
A phenomenological macroscopic model of the Giant Dipole Resonance (GDR)
damping width of cold- and hot-nuclei with ground-state spherical and
near-spherical shapes is developed. The model is based on a generalized Fermi
Liquid model which takes into account the nuclear surface dynamics. The
temperature dependence of the GDR damping width is accounted for in terms of
surface- and volume-components. Parameter-free expressions for the damping
width and the effective deformation are obtained. The model is validated with
GDR measurements of the following nuclides, K, Ca, Sc,
Cu, Sn,Eu, Hg, and Pb, and is
compared with the predictions of other models.Comment: 10 pages, 5 figure
Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles
Background: The healthy microbiome protects against the development of Clostridium difficile infection (CDI), which typically develops following antibiotics. The microbiome metabolises primary to secondary bile acids, a process if disrupted by antibiotics, may be critical for the initiation of CDI.
Aim: To assess the levels of primary and secondary bile acids associated with CDI and associated microbial changes.
Methods: Stool and serum were collected from patients with (i) first CDI (fCDI), (ii) recurrent CDI (rCDI) and (iii) healthy controls. 16S rRNA sequencing and bile salt metabolomics were performed. Random forest regression models were constructed to predict disease status. PICRUSt analyses were used to test for associations between predicted bacterial bile salt hydrolase (BSH) gene abundances and bile acid levels.
Results: Sixty patients (20 fCDI, 19 rCDI and 21 controls) were enrolled. Secondary bile acids in stool were significantly elevated in controls compared to rCDI and fCDI (P < 0.0001 and P = 0.0007 respectively). Primary bile acids in stool were significantly elevated in rCDI compared to controls (P < 0.0001) and in rCDI compared to fCDI (P = 0.02). Using random forest regression, we distinguished rCDI and fCDI patients 84.2% of the time using bile acid ratios. Stool deoxycholate to glycoursodeoxycholate ratio was the single best predictor. PICRUSt analyses found significant differences in predicted abundances of bacterial BSH genes in stool samples across the groups.
Conclusions: Primary and secondary bile acid composition in stool was different in those with rCDI, fCDI and controls. The ratio of stool deoxycholate to glycoursodeoxycholate was the single best predictor of disease state and may be a potential biomarker for recurrence.American College of Gastroenterology (Clinical Research Award ACGJR-017-2015
Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars
Baryon and quark superfluidity in the cooling of neutron stars are
investigated. Observations could constrain combinations of the neutron or
Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with
a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an
MeV render quark matter virtually invisible for cooling. If the quark gap is
smaller, quark superfluidity could be important, but its effects will be nearly
impossible to distinguish from those of other baryonic constituents.Comment: 4 pages, 3 ps figures, uses RevTex(aps,prl). Submitted to Phys. Rev.
Let
- …
