6,039 research outputs found

    Effective theories and constraints on new phyhsics

    Get PDF
    Anomalous moments of the top quark arises from one loop corrections to the vertices tˉtg\bar t t g and tˉtγ\bar t t \gamma. We study these anomalous couplings in different frameworks: effective theories, Standard Model and 2HDM. We use available experimental results in order to get bounds on these anomalous couplings.Comment: 8 pages, 2 figures, talk presented by R. Martinez at the X Mexican School of Particles and Fields, Playa del Carmen, Mexico, 200

    Shaped Pupil Lyot Coronagraphs: High-Contrast Solutions for Restricted Focal Planes

    Full text link
    Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.Comment: 41 pages, 15 figures; published in the JATIS special section on WFIRST-AFTA coronagraph

    Multipole methods for nanoantennas design: applications to Yagi-Uda configurations

    No full text
    International audienceWe present a detailed formalism allowing analytical calculations of the radiative properties of nanoantennas. This formalism does not rely on dipole approximations and utilizes multipolar multiple-scattering theory. The improvement in both accuracy and calculation speeds offered by this formulation provides significant advantages that are used in this work to study Yagi-Uda-type nanoantennas. We provide a study that questions the necessity of the reflector particle in nanoantennas
    corecore