1,038 research outputs found
Schwinger mechanism for gluons from lattice QCD
Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale
Ghost dynamics in the soft gluon limit
We present a detailed study of the dynamics associated with the ghost sector
of quenched QCD in the Landau gauge, where the relevant dynamical equations are
supplemented with key inputs originating from large-volume lattice simulations.
In particular, we solve the coupled system of Schwinger-Dyson equations that
governs the evolution of the ghost dressing function and the ghost-gluon
vertex, using as input for the gluon propagator lattice data that have been
cured from volume and discretization artifacts. In addition, we explore the
soft gluon limit of the same system, employing recent lattice data for the
three-gluon vertex that enters in one of the diagrams defining the
Schwinger-Dyson equation of the ghost-gluon vertex. The results obtained from
the numerical treatment of these equations are in excellent agreement with
lattice data for the ghost dressing function, once the latter have undergone
the appropriate scale-setting and artifact elimination refinements. Moreover,
the coincidence observed between the ghost-gluon vertex in general kinematics
and in the soft gluon limit reveals an outstanding consistency of physical
concepts and computational schemes.Comment: 34 pages, 12 figure
Schwinger mechanism for gluons from lattice QCD
Continuum and lattice analyses have revealed the existence of a mass-scale in
the gluon two-point Schwinger function. It has long been conjectured that this
expresses the action of a Schwinger mechanism for gauge boson mass generation
in quantum chromodynamics (QCD). For such to be true, it is necessary and
sufficient that a dynamically-generated, massless, colour-carrying, scalar
gluon+gluon correlation emerge as a feature of the dressed three-gluon vertex.
Working with results on elementary Schwinger functions obtained via the
numerical simulation of lattice-regularised QCD, we establish with an extremely
high level of confidence that just such a feature appears; hence, confirm the
conjectured origin of the gluon mass scale.Comment: 8 pages, 8 figure
The Infrared Behaviour of the Pure Yang-Mills Green Functions
We review the infrared properties of the pure Yang-Mills correlators and
discuss recent results concerning the two classes of low-momentum solutions for
them reported in literature; i.e. decoupling and scaling solutions. We will
mainly focuss on the Landau gauge and pay special attention to the results
inferred from the analysis of the Dyson-Schwinger equations of the theory and
from "{\it quenched}" lattice QCD. The results obtained from properly
interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs
Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection
Acknowledgements We want to express our gratitude to the Union Medical University Clinic, Dominican Republic, for their support and collaboration in the development of this research project. We also want to express our gratitude to the Mexican families who have donated the brain of their loved ones affected with Alzheimer's disease and made our research possible. This work is dedicated to the memory of Professor Dr. José Raúl Mena López†.Peer reviewedPublisher PD
Following a foraging fish-finder : diel habitat use of Blainville's beaked whales revealed by echolocation
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28353, doi:10.1371/journal.pone.0028353.Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean.The work was funded by the Office of Naval Research and the National Ocean Partnership Program (US), by a consortium consisting of the Canary Islands Government, the Spanish Ministry of Environment and the Spanish Ministry of Defense, and by the European environmental funding LIFE-INDEMARES program for the inventory and designation of the Natura 2000 network in marine areas of the Spanish territory, headed by Fundacion Biodiversidad, with additional support from the Cabildo Insular of El Hierro. PA is currently supported by the National Research Project: Cetacean, Oceanography and Biodiversity from La Palma and El Hierro (CGL2009-13112) of the Spanish Ministry of Science and NAS by a Marie Curie fellowship from the 7th European Frame Program. MJ was supported by grants from the Strategic Environmental Research Development Program and from the National Ocean Partnership Program. PTM was supported by frame grants from the National Danish Science Foundation
A hepatitis B virus causes chronic infections in equids worldwide
Preclinical testing of novel therapeutics for chronic hepatitis B (CHB) requires suitable animal models. Equids host homologs of hepatitis C virus (HCV). Because coinfections of hepatitis B virus (HBV) and HCV occur in humans, we screened 2,917 specimens from equids from five continents for HBV. We discovered a distinct HBV species (Equid HBV, EqHBV) in 3.2% of donkeys and zebras by PCR and antibodies against EqHBV in 5.4% of donkeys and zebras. Molecular, histopathological, and biochemical analyses revealed that infection patterns of EqHBV resembled those of HBV in humans, including hepatotropism, moderate liver damage, evolutionary stasis, and potential horizontal virus transmission. Naturally infected donkeys showed chronic infections resembling CHB with high viral loads of up to 2.6 × 109 mean copies per milliliter serum for >6 mo and weak antibody responses. Antibodies against Equid HCV were codetected in 26.5% of donkeys seropositive for EqHBV, corroborating susceptibility to both hepatitis viruses. Deltavirus pseudotypes carrying EqHBV surface proteins were unable to infect human cells via the HBV receptor NTCP (Na+/taurocholate cotransporting polypeptide), suggesting alternative viral entry mechanisms. Both HBV and EqHBV deltavirus pseudotypes infected primary horse hepatocytes in vitro, supporting a broad host range for EqHBV among equids and suggesting that horses might be suitable for EqHBV and HBV infections in vivo. Evolutionary analyses suggested that EqHBV originated in Africa several thousand years ago, commensurate with the domestication of donkeys. In sum, EqHBV naturally infects diverse equids and mimics HBV infection patterns. Equids provide a unique opportunity for preclinical testing of novel therapeutics for CHB and to investigate HBV/ HCV interplay upon coinfection
- …