59 research outputs found

    Könyvismertetések

    Get PDF

    Microarray technology

    Get PDF
    The normal functions of the cells are based on a strict and regulated expression of various genes. If this precise hierarchy of gene actions becomes unregulated or disturbed due to different genetic or environmental effects, the result will be abnormal cellular function that eventually could lead pathological alterations, including carcinogenic transformation or apoptosis. To understand the complex mechanisms and networks involved in biological processes and diseases, it is not enough to analyze isolated pathways, single gene functions or a single genetic event. A living organism has to be studied as a complex system and all genes involved in different biological processes need to be analyzed simultaneously: a systems biology approach should be applied. In the beginning of the 1990’s years, a new, high throughput technology - called microarray technology – was developed to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Microarrays have dramatically accelerated many types of investigation since a microarray experiment can accomplish many genetic tests in parallel. This review summarizes some of aspects of the microarray technology, including sample preparations, application possibilities and data analysis

    MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polyunsaturated fatty acids (PUFAs) such as γ-linolenic acid (GLA), arachidonic acid (AA) and docosahexaenoic acid (DHA) have cytotoxic action on glioma cells.</p> <p>Results</p> <p>We evaluated the cytotoxic action of GLA, AA and DHA on glioma cells with specific reference to the expression of miRNAs. Relative expression of miRNAs were assessed by using high throughput nanocapillary real-time PCR. Most of the miRNA target genes that showed altered expression could be classified as apoptotic genes and were up-regulated by PUFA or temozolomide treatment, while similar treatments resulted in repression of the corresponding mRNAs, such as <it>cox2</it>, <it>irs1</it>, <it>irs2</it>, <it>ccnd1</it>, <it>itgb3</it>, <it>bcl2</it>, <it>sirt1</it>, <it>tp53inp1 </it>and <it>k-ras</it>.</p> <p>Conclusions</p> <p><it>Our </it>results highlight involvement of miRNAs in the induction of apoptosis in glioma cells by fatty acids and temozolomide.</p

    Könyvismertetések

    Full text link

    Acetylation State of Lysine 14 of Histone H3.3 Affects Mutant Huntingtin Induced Pathogenesis

    Get PDF
    Huntington’s Disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a polyglutamine-coding CAG repeat in the Huntingtin gene. One of the main causes of neurodegeneration in HD is transcriptional dysregulation that, in part, is caused by the inhibition of histone acetyltransferase (HAT) enzymes. HD pathology can be alleviated by increasing the activity of specific HATs or by inhibiting histone deacetylase (HDAC) enzymes. To determine which histone’s post-translational modifications (PTMs) might play crucial roles in HD pathology, we investigated the phenotype-modifying effects of PTM mimetic mutations of variant histone H3.3 in a Drosophila model of HD. Specifically, we studied the mutations (K→Q: acetylated; K→R: non-modified; and K→M: methylated) of lysine residues K9, K14, and K27 of transgenic H3.3. In the case of H3.3K14Q modification, we observed the amelioration of all tested phenotypes (viability, longevity, neurodegeneration, motor activity, and circadian rhythm defects), while H3.3K14R had the opposite effect. H3.3K14Q expression prevented the negative effects of reduced Gcn5 (a HAT acting on H3K14) on HD pathology, while it only partially hindered the positive effects of heterozygous Sirt1 (an HDAC acting on H3K14). Thus, we conclude that the Gcn5-dependent acetylation of H3.3K14 might be an important epigenetic contributor to HD pathology

    Contribution of invasive bivalves (Dreissena spp.) to element distribution: phase interaction, regional and seasonal comparison in a large shallow lake

    Get PDF
    After introduction, the invasive bivalve dreissenids became key species in the biota of Lake Balaton, the largest shallow lake in Central Europe. The contribution of dreissenid soft tissue and shell, as biotic phases, in element distribution and its interaction with the water and upper sediment phases were examined in two basins with different trophic conditions in spring and autumn. Six metals (Ba, Cu, Fe, Mn, Pb, Zn) were detected in all investigated phases. In general, metals were abundant in the water and soft tissue in the eastern basin in spring, and in the sediment and shells in the western basin in autumn. This might be associated with the more urbanized surroundings in the eastern, and the enhanced organic matter production in the western basin. High relative shares of Ba, Cu, Mn, and Pb were associated with the water and shell samples, whereas high shares of Fe and Zn were noted in the soft mussel tissue and sediments. Results suggest that dynamics of metal uptake by dreissenids depend on the seasonal change in metabolic activity. Shell metal content is less changeable; shells might absorb metals from both the soft tissue and water phases. Metallothionein peptides, the scavengers of intracellular metals, were determined to be biomarkers of the bulk contaminants rather than only metals. The present study shows that invasive bivalves, with high abundance, filtering activity, and storing capacity can significantly contribute to element distribution in the shoreline of a shallow lake ecosystem

    Glutathione Transferases are Involved in Salicylic Acid-Induced Transcriptional Reprogramming

    Get PDF
    Salicylic acid (SA) plays a crucial role not only in defence against pathogen attacks, but also in abiotic stress responses. Recently, some key steps of SA signalling outlined the importance of redox state-dependent processes. This study explores the role of glutathione transferases (GSTs) in the transcriptional reprogramming of redox status-related genes in seven-day-old wild type and Atgst mutant Arabidopsis thaliana plants. The timing of redox changes, detected by the redox-sensitive green fluorescent protein (roGFP2), differed in wild type roots treated with 10 μM or 100 μM SA. Our results verified how the applied SA concentrations had different effect on the expression of oxidative stress- and redox-related genes, among them on the expression of AtGSTF8 and AtGSTU19 genes. Lower vitality and less negative E GSH values were specific characteristics of the Atgst mutants compared to the wild type plants throughout the experiment. Changes in the redox potential were only modest in the mutants after SA treatments. A slightly modified gene expression pattern was observed in control conditions and after 1 h of SA treatments in Atgst mutants compared to Col-0 roots. These data originating from the whole roots provide indirect evidence for the role of the investigated AtGSTF8 and AtGSTU19 isoenzymes in the transduction of the redox signal. Our results demonstrate that the investigated Arabidopsis GSTs have a role in maintaining the levels of reactive oxygen species- and redox homeostasis and are involved in transcriptional reprogramming in the roots
    corecore