2 research outputs found
Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma
<p>Abstract</p> <p>Background</p> <p><it>HER-2 </it>gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC) and fluorescence <it>in situ </it>hybridization (FISH). These procedures permit correlation between <it>HER-2 </it>expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic <it>in situ </it>hybridization) is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas.</p> <p>Methods</p> <p>To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH.</p> <p>Results</p> <p>The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of <it>HER-2 </it>status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4%) and <it>HER-2 </it>transcript overexpression (20%). Moreover, 2+ immunostaining cases presented nonamplified status (50%) by CISH and <it>HER-2 </it>downexpression (38.5%) by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between <it>HER-2 </it>downexpression and the involvement of less than four lymph nodes (<it>P </it>= 0.0350).</p> <p>Conclusion</p> <p>Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the <it>HER-2 </it>gene.</p
Classical and molecular cytogenetic analysis in head and neck squamous cell carcinomas
Head and neck carcinomas represent the sixth most frequent type of cancer in the world, and 90% are derived from squamous cells (HNSCC). In this study of 15 HNSCC cases, extensive aneuploidy was detected by G banding in most tumors. The most frequently observed numerical changes involved gain of a chromosome 22, and loss of chromosomes Y, 10, 17, and 19. The most frequent structural alteration was del(22)(q13.1). As compared to G-banding, fluorescence in situ hybridization (FISH) proved to be an effective technique for detecting aneuploidy. Interphase FISH with a chromosome 17 centromere probe disclosed a high frequency of monosomy for chromosome 17, in contrast with G-banding, by which clonal monosomy 17 was detected in only three of the tumors. Painting probes for chromosomes 5 and 16 were used to evaluate a selected series of HNSCC in which G-banding analysis had shown marker chromosomes. FISH analysis failed to confirm the origin of the marker chromosomes, but four out of five cases showed a significant loss of chromosomes 5. This difference between FISH and G-banding results may reflect the smaller number of metaphase analyzed as well as the criteria adopted for sorting these metaphases. Therefore results obtained solely by G-banding analysis should be considered with caution. Our data confirmed the involvement of chromosome 17 in head and neck squamous cell carcinomas