1,392 research outputs found

    Restructuring TCAD System: Teaching Traditional TCAD New Tricks

    Full text link
    Traditional TCAD simulation has succeeded in predicting and optimizing the device performance; however, it still faces a massive challenge - a high computational cost. There have been many attempts to replace TCAD with deep learning, but it has not yet been completely replaced. This paper presents a novel algorithm restructuring the traditional TCAD system. The proposed algorithm predicts three-dimensional (3-D) TCAD simulation in real-time while capturing a variance, enables deep learning and TCAD to complement each other, and fully resolves convergence errors.Comment: In Proceedings of 2021 IEEE International Electron Devices Meeting (IEDM

    F-18 FP-CIT PET in Multiple System Atrophy of the Cerebellar Type: Additional Role in Treatment

    Get PDF
    We evaluated the difference in the status of dopamine transporters (DATs) depending on Parkinsonism, cerebellar, and autonomic features using F-18 FP-CIT positron emission tomography (PET) in multiple system atrophy with cerebellar ataxia (MSA-C). We also assessed whether the DAT PET could be useful in the management of MSA-C. Forty-nine patients who were clinically diagnosed as possible to probable MSA-C were included. Based on the F-18 FP-CIT PET results, patients were classified into normal (n=25) and abnormal (n=24) scan groups. There were statistically significant differences in rigidity, bradykinesia, postural instability, asymmetry, and specific uptake ratio (SUR) between the two groups but no significant differences in tremor and cerebellar/autonomic symptoms. Dopaminergic medications were administered to 22 patients. All seven patients with normal scans showed no change, while 10 of the 15 patients with abnormal scans showed clinical improvement. There was a trend of a negative correlation between levodopa equivalent dose and SUR, but it was not statistically significant. DAT imaging, such as F-18 FP-CIT PET, may be useful in predicting the response to dopaminergic medication regardless of cerebellar/autonomic symptoms in MSA-C. In addition to being used for the diagnosis of the disease, it may be used as a treatment decision index

    Multiphysics analysis of heat pipe cooled microreactor core with adjusted heat sink temperature for thermal stress reduction using OpenFOAM coupled with neutronics and heat pipe code

    Get PDF
    Heat-pipe-cooled microreactors (HPRs) have advantages such as a compact design, easy transportation, and improved system reliability and stability. The core of an HPR consists of fuel rods and heat pipes in a monolith, which is a solid block structure containing many holes for the fuel rods and heat pipes. When designing the core of an HPR, high thermal stress and reactivity feedback owing to thermal expansion are important considerations. Therefore, a high-fidelity multiphysics analysis tool is required for accurately analyzing an HPR core. When performing a multiphysics analysis, it is necessary to couple the heat pipe thermal analysis code, thermal-structural analysis code, and neutronics code. To develop a multiphysics analysis tool, OpenFOAM, an open source Computational Fluid Dynamics (CFD) tool, and ANLHTP, a heat pipe thermal analysis code, were coupled. In this process, the structural analysis solver of OpenFOAM was verified, and its limitations were improved. To confirm the proper working of the code, the mini-core problem was analyzed using the OpenFOAM-ANLHTP coupled code. Next, to consider the reactivity feedback, coupling with PRAGMA, a GPU-based continuous-energy-Monte Carlo neutronics code was performed, and the multiphysics analysis capability of the OpenFOAM-ANLHTP-PRAGMA coupled code was confirmed through an analysis of the MegaPower reactor core. To reduce the temperature distribution within the monolith, the temperature distribution of the heat pipe sink was adjusted, and the reduced thermal stress of an HPR core was observed

    Boehmeria nivea

    Full text link

    Ocular findings in patients with spastic type cerebral palsy

    Get PDF
    Abstracts Background Refractive errors, strabismus, nystagmus, amblyopia, and cortical visual impairment are observed in 50 to 90 % of patients with cerebral palsy. Ocular abnormalities are known to differ according to cerebral palsy type, and spastic type has been reported to be more likely to be associated with ocular defects than the athetoid and ataxic types. Methods A retrospective review of medical records was performed on 105 consecutive children with spastic type of cerebral palsy who underwent ophthalmologic examination between July 2003 and March 2006. The complete ophthalmological examination included measurement of visual acuity, ocular motility, stereoacuity, binocular vision, cycloplegic refraction along with the evaluation of the anterior segment and the posterior segment. Results The most common ocular abnormality was strabismus (70.5 %) followed by refractive errors (53.3 %). Exodeviation was more commonly found than esodeviation (46 vs 27 patients), and hyperopia was much more prevalent than myopia. A considerable number of patients with strabismus had abnormal ocular motility wherein 16 patients showed inferior oblique overaction and ten superior oblique overaction. Whereas inferior oblique overaction was accompanied similarly in exotropia and esotropia, superior oblique overaction was accompanied more by exotropia. Conclusions Children with spastic type cerebral palsy have a high prevalence of strabismus and refractive errors. Exotropia and hyperopia are the most common ocular abnormalities. All children with spastic type of cerebral palsy may require a detailed ophthalmologic evaluation

    Inactivation Patterns of p16/INK4A in Oral Squamous Cell Carcinomas

    Get PDF
    The p16/INK4A is one of the major target genes in carcinogenesis and its inactivation has frequently been reported in other types of tumors. The purpose of this study is to evaluate inactivation patterns of p16/INK4A in oral squamous cell carcinoma. Six different oral cancer cell lines, SCC-4, SCC-9, SCC-15, SCC-25, KB, and SNUDH- 379 were examined for inactivation of p16/INK4A genes. In the analysis of p16/INK4A gene inactivation, PCR amplification, direct sequencing, and methylation-specific PCR methods were adopted for evaluation of homozygous deletion, point mutation, and promoter hypermethylation, respectively. Homozygous deletion was detected in SCC-25 and SCC-9. SCC-15 showed hypermethylated promoter region within p16/INK4A gene. It is suggestive in the present study that inactivation patterns of p16/INK4A were mainly homozygous deletion, promoter methylation rather than point mutation in oral squamous cancer cell lines, so treatment modalities of oral squamous cell carcinoma should be focused on these types of inactivation

    Potassium chloride elicits enhancement of bilobalide and Ginkgolides production by Ginkgo biloba cell cultures

    Get PDF
    This study investigated the ability of potassium chloride (KCl) to elicit the production of bilobalide (BB), ginkgolide A (GA) and ginkgolide B (GB) by Ginkgo biloba cell suspension cultures. The salt stress by KCl treatments increased production of BB, GA and GB in both suspended cells and cultured medium. Especially, treatment of KCl 800 mM of highest concentration was stimulated emission into cultured medium BB, GA and GB compounds accumulated in cells. Although KCl 800 mM severely inhibited cells growth, the maximum content of GA and GB in cells was obtained in the treatment of KCl 800 mM, which was 1.9 and 4.0 times higher than the control. These results thus suggest that salt stress can afford enhanced production of secondary metabolites by plant cell cultures
    corecore