95 research outputs found
The Molecular Pathogenesis of Osteosarcoma: A Review
Osteosarcoma is the most common primary malignancy of bone. It arises in bone during periods of rapid growth and primarily affects adolescents and young adults. The 5-year survival rate for osteosarcoma is 60%–70%, with no significant improvements in prognosis since the advent of multiagent chemotherapy. Diagnosis, staging, and surgical management of osteosarcoma remain focused on our anatomical understanding of the disease. As our knowledge of the molecular pathogenesis of osteosarcoma expands, potential therapeutic targets are being identified. A comprehensive understanding of these mechanisms is essential if we are to improve the prognosis of patients with osteosarcoma through tumour-targeted therapies. This paper will outline the pathogenic mechanisms of osteosarcoma oncogenesis and progression and will discuss some of the more frontline translational studies performed to date in search of novel, safer, and more targeted drugs for disease management
Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
1,25(OH)2D3 ameliorates palmitate-induced lipotoxicity in human primary osteoblasts leading to improved viability and function
Mechanisms of palmitate-induced lipotoxicity in osteocytes
Background: Lipotoxicity is defined as cellular toxicity observed in the presence of an abnormal accumulation of
fat and adipocyte-derived factors in non-fat tissues. Palmitic acid (PA), an abundant fatty acid in the bone
marrow and particularly in osteoporotic bones, affects osteoblastogenesis and osteoblast function, decreasing
their survival through induction of apoptosis and dysfunctional autophagy. In this study, we hypothesized that
PA also has a lipotoxic effect on osteocytes in vitro.
Methods: Initially, we tested the effect of PA on osteocyte-derived factors DKK1, sclerostin and RANKL. Then, we
tested whether PA affects survival and causes apoptosis in osteocytes. Subsequently, we investigated the effect of
PA on autophagy by detecting the membrane component LC3-II (Western blot) and staining them and lysosomes
with Lysotracker Red dye.
Results: PA decreases RANKL, DKK1 and sclerostin expression in osteocytes. In addition, we found that PA
induces apoptosis and reduces osteocyte survival. PA also caused autophagy failure identified by a significant
increase in LC3-II and a reduced number of autophagosomes/lysosomes in the cytoplasm.
Conclusion: In addition to the effects of PA on RANKL, DKK1 and sclerostin expression, which could have significant
deleterious impact on bone cell coupling and bone turnover, PA also induced apoptosis and reduced
autophagy in osteocytes. Considering that apoptosis and cell dysfunction are two common changes occurring in
the osteocytes of osteoporotic bone, our findings suggest that PA could play a role in the pathogenesis of the
disease. Suppression of these effects could bring new potential targets for therapeutic interventions in the future
AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training
AMP-activated protein kinase (AMPK) has been extensively studied in whole muscle biopsy samples of humans, yet the fiber type-specific expression and/or activation of AMPK is unknown. We examined basal and exercise AMPK-α Thr172 phosphorylation and AMPK subunit expression (α1, α2, and γ3) in type I, IIa, and IIx fibers of human skeletal muscle before and after 10 days of exercise training. Before training basal AMPK phosphorylation was greatest in type IIa fibers (P type IIa > type I), irrespective of training status. Thus skeletal muscle AMPK phosphorylation and AMPK expression are fiber type specific in humans in the basal state, as well as during exercise. Our findings reveal fiber type-specific differences that have been masked in previous studies examining mixed muscle samples
Rapamycin Affects Palmitate-Induced Lipotoxicity in Osteoblasts by Modulating Apoptosis and Autophagy
Abstract
Bone marrow fat infiltration is one of the hallmarks of aging and osteoporotic bones. Marrow adipocytes produce substantial amounts of palmitic acid (PA). PA is toxic to bone-forming osteoblasts in vitro, affecting their differentiation, function, and survival. Since rapamycin (RAP)-induced inhibition of target of rapamycin complex 1 (mTORC1) activates autophagy and prevents apoptosis, we hypothesized that RAP may preserve osteoblast viability and reduce PA-induced lipotoxicity. Normal human osteoblasts were incubated with RAP in the presence of a lipotoxic concentration of PA or vehicle for 24 and 48 hours. Expression of LC3 protein levels and the phosphorylation of the direct mTORC1 target p70S6K1-T389 were quantified by Western blot. Lysosomes and autophagosomes were studied using confocal fluorescence imaging, lysotracker, and live-cell imaging. RAP reduced PA-induced apoptosis. In addition, PA-induced autophagosome formation increased substantially over the time-course, an effect that was significantly regulated by the presence of RAP in the media. In addition, LC3I/II ratios were higher in PA-induced cells with RAP whereas p70S6K1-T389 were lower in PA and RAP together. In summary, this study highlights the role of the RAP-sensitive mTORC1 pathway in normal human osteoblasts under lipotoxic conditions. RAP-associated therapies could, potentially, be targeted for specific roles in osteoporosis and aging bone.</jats:p
- …
