55 research outputs found

    Uncoventional Views on Certain Aspects of Toxin-Induced Metabolic Acidosis

    Get PDF
    This discussion will highlight the following 9 specific points that related to metabolic acidosis caused by various toxins. The current recommendation suggests that alcohol dehydrogenase inhibitor fomepizole is preferred to ethanol in treatment of methanol and ethylene glycol poisoning, but analysis of the enzyme kinetics indicates that ethanol is a better alternative. In the presence of a modest increase in serum osmolal gap (<30 mOsm/L), the starting dose of ethanol should be far less than the usual recommended dose. One can take advantage of the high vapor pressure of methanol in the treatment of methanol poisoning when hemodialysis is not readily available. Profuse sweating with increased water ingestion can be highly effective in reducing methanol levels. Impaired production of ammonia by the proximal tubule of the kidney plays a major role in the development of metabolic acidosis in pyroglutamic acidosis. Glycine, not oxalate, is the main final end product of ethylene glycol metabolism. Metabolism of ethylene glycol to oxalate, albeit important clinically, represents less than 1% of ethylene glycol disposal. Urine osmolal gap would be useful in the diagnosis of ethylene glycol poisoning, but not in methanol poisoning. Hemodialysis is important in the treatment of methanol poisoning and ethylene glycol poisoning with renal impairment, with or without fomepizole or ethanol treatment. Severe leucocytosis is a highly sensitive indicator of ethylene glycol poisoning. Uncoupling of oxidative phosphorylation by salicylate can explain most of the manifestations of salicylate poisoning

    A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B

    Get PDF
    Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. a-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to a-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of a-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by a-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal a-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to a-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-a-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with a-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in a-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT-Foundation for Science and Technology-for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) - project PTDC/DTPFTO/4973/2014 - and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundacao para a Ciencia e Tecnologia) through project Pest-C/EQB/LA0006/2013

    Total and corrected antioxidant capacity in hemodialyzed patients

    Get PDF
    BACKGROUND: Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. METHODS: Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC) of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin) in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. RESULTS: Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t(1/2 )of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters). Three specimens were collected (0, 30, 240 min). The results of this second group confirm our initial results, while no significant difference was observed using either filter. CONCLUSIONS: Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants
    • …
    corecore