25 research outputs found
A simple approach for synthesis, characterization and bioactivity of bovine bones to fabricate the polyurethane nanofiber containing hydroxyapatite nanoparticles
In the present study, we had introduced polyurethane (PU) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals had been employed to synthesize HAp NPs through the calcination of bovine bones. Typically, a colloidal gel consisting of HAp/PU had been electrospun to form nanofibers. In this communication, physiochemical aspects of prepared nanofibers were characterized by FE-SEM, TEM and TEM-EDS, which confirmed that nanofibers were well-oriented and good dispersion of HAp NPs, over the prepared nanofibers. Parameters, affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubating in simulated body fluid (SBF). The results from incubation of nanofibers, indicated that incorporation of HAp strongly activates the precipitation of the apatite-like particles, because of the HAp NPs act as seed, that accelerate crystallization of the biological HAp from the utilized SBF
Advanced Waveguide Based LOC Biosensors: A Minireview
This mini review features contemporary advances in mid-infrared (MIR) thin-film waveguide technology and on-chip photonics, promoting high-performance biosensing platforms. Supported by recent developments in MIR thin-film waveguides, it is expected that label-free assimilated MIR sensing platforms will soon supplement the current sensing technologies for biomedical diagnostics. The state-of-the-art shows that various types of waveguide material can be utilized for waveguide spectroscopic measurements in MIR. However, there are challenges to integrating these waveguide platforms with microfluidic/Lab-on-a-Chip (LOC) devices, due to poor light–material interactions. Graphene and its analogs have found many applications in microfluidic-based LOC devices, to address to this issue. Graphene-based materials possess a high conductivity, a large surface-to-volume ratio, a smaller and tunable bandgap, and allow easier sample loading; which is essential for acquiring precise electrochemical information. This work discusses advanced waveguide materials, their advantages, and disease diagnostics with MIR thin-film based waveguides. The incorporation of graphene into waveguides improves the light–graphene interaction, and photonic devices greatly benefit from graphene’s strong field-controlled optical response
Fabrication of poly(caprolactone) nanofibers containing hydroxyapatite nanoparticles and their mineralization in a simulated body fluid
In the present study, we introduce poly(caprolactone) (PCL) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals has been employed to synthesize HAp NPs through calcination of bovine bones. Typically, a colloidal gel consisting of PCL/HAp has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were characterized for FE-SEM, TEM, XRD and FTIR which confirmed nanofibers were well-oriented and had good dispersion of HAp NPs. Parameters affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubated with stimulated body fluid (SBF). The results from incubation of nanofibers in SBF indicate that incorporation of HAp strongly activates precipitation of the apatite-like materials because the HAp NPs act as seeds that accelerate crystallization of the biological HAp from the utilized SBF
Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO<sub>2</sub> Nanofibers
Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activ-ity; however other influences have not been investigated. In this work, effect of sliver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalytic activity of titanium oxide nanofibers has been studied. Sil-ver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600°C. The results affirmed formation of silver-doped TiO2 nanofibers composed of anatase and rutile when the silver nitrate content in the original electrospun solution was more than 3 wt%. The rutile phase content was directly proportional with the AgNO3 concentration in the electrospun solution. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. Study of the photocatalytic degradation of methylene blue dye clarified that in-crease the silver content strongly enhances the dye oxidation process