3,256 research outputs found
Precise measurements of electron and hole g-factors of single quantum dots by using nuclear field
We demonstrated the cancellation of the external magnetic field by the
nuclear field at one edge of the nuclear polarization bistability in single
InAlAs quantum dots. The cancellation for the electron Zeeman splitting gives
the precise value of the hole g-factor. By combining with the exciton g-factor
that is obtained from the Zeeman splitting for linearly polarized excitation,
the magnitude and sign of the electron and hole g-factors in the growth
direction are evaluated.Comment: 3 pages, 2 figure
A deformed QRPA formalism for single and two-neutrino double beta decay
We use a deformed QRPA formalism to describe simultaneously the energy
distributions of the single beta Gamow-Teller strength and the two-neutrino
double beta decay matrix elements. Calculations are performed in a series of
double beta decay partners with A = 48, 76, 82, 96, 100, 116, 128, 130, 136 and
150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock
mean fields. The formalism includes a quasiparticle deformed basis and residual
spin-isospin forces in the particle-hole and particle-particle channels. We
discuss the sensitivity of the parent and daughter Gamow-Teller strength
distributions in single beta decay, as well as the sensitivity of the double
beta decay matrix elements to the deformed mean field and to the residual
interactions. Nuclear deformation is found to be a mechanism of suppression of
the two-neutrino double beta decay. The double beta decay matrix elements are
found to have maximum values for about equal deformations of parent and
daughter nuclei. They decrease rapidly when differences in deformations
increase. We remark the importance of a proper simultaneous description of both
double beta decay and single Gamow-Teller strength distributions. Finally, we
conclude that for further progress in the field it would be useful to improve
and complete the experimental information on the studied Gamow-Teller strengths
and nuclear deformations.Comment: 33 pages, 19 figures. To be published in Phys. Rev.
Confronting Dilaton-exchange gravity with experiments
We study the experimental constraints on theories, where the equivalence
principle is violated by dilaton-exchange contributions to the usual
graviton-exchange gravity. We point out that in this case it is not possible to
have any CPT violation and hence there is no constraint from the CPT violating
measurements in the system. The most stringent bound is obtained from the
mass difference. In contrast, neither neutrino oscillation
experiments nor neutrinoless double beta decay imply significant constraints.Comment: 7 page
Spin-filter tunnel junction with matched Fermi surfaces
Efficient injection of spin-polarized current into a semiconductor is a basic
prerequisite for building semiconductor-based spintronic devices. Here, we use
inelastic electron tunneling spectroscopy to show that the efficiency of
spin-filter-type spin injectors is limited by spin scattering of the tunneling
electrons. By matching the Fermi-surface shapes of the current injection source
and target electrode material, spin injection efficiency can be significantly
increased in epitaxial ferromagnetic insulator tunnel junctions. Our results
demonstrate that not only structural but also Fermi-surface matching is
important to suppress scattering processes in spintronic devices.Comment: 5 pages, 4 figure
- …