195 research outputs found

    Arbuscular Mycorrhiza Symbiosis Enhances Water Status and Soil-Plant Hydraulic Conductance Under Drought

    Get PDF
    Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below −0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below −1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures

    Quantification of root water uptake and redistribution using neutron imaging : a review and future directions

    Get PDF
    Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions

    Quantification of hydraulic redistribution in maize roots using neutron radiography

    Get PDF
    Abstract Plants redistribute water from wet to dry soil layers through their roots, in the process called hydraulic redistribution. Although the relevance and occurrence of this process are well accepted, resolving the spatial distribution of hydraulic redistribution remains challenging. Here, we show how to use neutron radiography to quantify the rate of water efflux from the roots to the soil. Maize (Zea mays L.) plants were grown in a sandy substrate 40 cm deep. Deuterated water (D2O) was injected in the bottom wet compartment, and its transport through the roots to the top dry soil was imaged using neutron radiography. A diffusion–convection model was used to simulate the transport of D2O in soil and root and inversely estimate the convective fluxes. Overnight, D2O appeared in nodal and lateral roots in the top compartment. By inverse modeling, we estimated an efflux from lateral roots into the dry soil equal to jr = 2.35 × 10−7 cm−1. A significant fraction of the redistributed water flew toward the tips of nodal roots (3.85 × 10−8 cm3 s−1 per root) to sustain their growth. The efflux from nodal roots depended on the roots’ length and growth rate. In summary, neutron imaging was successfully used to quantify hydraulic redistribution. A numerical model was needed to differentiate the effects of diffusion and convection. The highly resolved images showed the spatial heterogeneity of hydraulic redistribution

    Leaf gas exchange characteristics, biomass partitioning, and water use efficiencies of two C 4 African grasses under simulated drought

    Get PDF
    Background Few studies have evaluated the effect of drought on the morpho-physiological characteristics of African C4 grasses. We investigated how drought affects leaf gas exchange characteristics, biomass partitioning, and water use efficiencies of Enteropogon macrostachyus and Cenchrus ciliaris. Methods The grasses were grown in a controlled environment under optimum conditions, that is, 70% of the maximum water-holding capacity (WHC) for the first 40 days. Thereafter, half of the columns were maintained under optimum or drought conditions (30% of maximum WHC) for another 20 days. Results Under optimum conditions, C. ciliaris showed a significantly higher photosynthetic rate, stomatal conductance, and transpiration rate than E. macrostachyus. Drought decreased the photosynthetic rate, stomatal conductance and transpiration rate only in C. ciliaris. The net photosynthetic rate, stomatal conductance, and leaf transpiration of E. macrostachyus did not differ significantly under optimum and drought conditions. E. macrostachyus showed an increase in its water use efficiencies under drought to a greater extent than C. ciliaris. Conclusions Our results demonstrate that C. ciliaris is more sensitive to drought than E. macrostachyus. The decrease in the intercellular CO2 concentration and the increase in stomatal limitation with drought in C. ciliaris and E. macrostachyus suggest that stomatal limitation plays the dominant role in photosynthesis of the studied African C4 grasses

    Spatial Distribution of Mucilage in the Rhizosphere Measured With Infrared Spectroscopy

    Get PDF
    Mucilage is receiving increasing attention because of its putative effects on plant growth, but so far no method is available to measure its spatial distribution in the rhizosphere. We tested whether the C-H signal related to mucilage fatty acids is detectable by infrared spectroscopy and if this method can be used to determine the spatial distribution of mucilage in the rhizosphere. Maize plants were grown in rhizoboxes filled with soil free of organic matter. Infrared measurements were carried out along transects perpendicular as well as axially to the root channels. The perpendicular gradients of the C-H proportions showed a decrease of C-H with increasing distance: 0.8 mm apart from the root center the C-H signals achieved a level near zero. The measured concentrations of mucilage were comparable with results obtained in previous studies, which encourages the use of infrared spectroscopy to quantitatively image mucilage in the rhizosphere

    Connecting the dots between root, xylem and stomata

    Get PDF
    2 páginas.- 3 referencias.- Comunicación oral presentada en el BP2021: XXIV Reunión de la Sociedad Española de Biología de Plantas y XVII Congreso Hispano-Luso de Biología de Plantas, 7 y 8 de julio de 2021. onlineStomata are present on all land plants and are key features for vascular plant water content regulation on Earth. Their primary function, i.e., stomatal closure to control water los s under soil and atmospheric drought, is Ihought to prevent cavitation in the vascular system (Brodribb et al. 2017). However, stomata are found to close much before the xylem cavitates - i.e., the leaf water potential at which stomata close by 50% (IV gs50) is much less negative than the water potential at which the xylem loses 50% of its conductivity (lV_x50) (Martin-St Paul et al. 2017). The mechanism that would allow sto mata to close promptly to a decrease in transpiration in relation to a change in leaf water potential before the decrease in hydraulic conductance is still elusive. Our hypothesis is that the loss of root-soil hydraulic conductivity, more than xylem vulnerability to embolisms, is Ihe primary constraint on transpiration during drought (RodriguezDominguez and Brodribb 2020). Thus, sto mala would close when the water potential around the roots drops more rapidly than the increase in transpiration. We investigated whether this loss of root-soil hydraulic conductivity, probably caused due to root shrinkage and the formation of air-filled gaps, aml/or damage to fine roots, appeared to be an important constraint on transpiration during drought. We conducted physiological and imaging experiments on maize plants undergoing moderate drought. We performed highresolution imaging (micro-CT) of leaves and the root-soil interface and measured in parallel the soil and plant water potentials. Transpiration, stomatal conductance, root hydraulic conductance and soil and plant water potential were also measured during soil drying in a similar set of plants. The formation of air-filled gaps along individual maize roots was visualized and quantified, finding an agreement between the soil water potential at which roots shrank and root hydraulic conductance decreased, and the soil water potential at which sto mata c1osed. These results proved the hypothesis that the loss of contact between roots and soil, and probably other root cortex modifications, triggered stomatal c10sure and transpiration reduction.Microcomputed tomography measurements were conducted at the PSYCHE beamline at SOLEIL Synchrotron (Paris, France). C.M.R-D. was supported by a "Juan de la Cierva - Incorporación" post-doctoral fellowship (Spain) and was granted a Junior Fellowship by the University of Bayreuth Centre of Intemational Excellence "Alexander von Humboldt" for conducting this specific experiment.N

    Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2

    Get PDF
    Objective: To delineate the natural history, diagnosis, and treatment response of Parkinson disease (PD) in individuals with 22q11.2 deletion syndrome (22q11.2DS), and to determine if these patients differ from those with idiopathic PD. Methods: In this international observational study, we characterized the clinical and neuroimaging features of 45 individuals with 22q11.2DS and PD (mean follow-up 7.5 ± 4.1 years). Results: 22q11.2DS PD had a typical male excess (32 male, 71.1%), presentation and progression of hallmark motor symptoms, reduced striatal dopamine transporter binding with molecular imaging, and initial positive response to levodopa (93.3%). Mean age at motor symptom onset was relatively young (39.5 ± 8.5 years); 71.4% of cases had early-onset PD (<45 years). Despite having a similar age at onset, the diagnosis of PD was delayed in patients with a history of antipsychotic treatment compared with antipsychotic-naive patients (median 5 vs 1 year, p = 0.001). Preexisting psychotic disorders (24.5%) and mood or anxiety disorders (31.1%) were common, as were early dystonia (19.4%) and a history of seizures (33.3%). Conclusions: Major clinical characteristics and response to standard treatments appear comparable in 22q11.2DS-associated PD to those in idiopathic PD, although the average age at onset is earlier. Importantly, treatment of preexisting psychotic illness may delay diagnosis of PD in 22q11.DS patients. An index of suspicion and vigilance for complex comorbidity may assist in identifying patients to prioritize for genetic testing

    Somatic alpha-synuclein mutations in Parkinson's disease: Hypothesis and preliminary data.

    Get PDF
    Alpha-synuclein (SNCA) is crucial in the pathogenesis of Parkinson's disease (PD), yet mutations in the SNCA gene are rare. Evidence for somatic genetic variation in normal humans, also involving the brain, is increasing, but its role in disease is unknown. Somatic SNCA mutations, arising in early development and leading to mosaicism, could contribute to PD pathogenesis and yet be absent or undetectable in DNA derived from peripheral lymphocytes. Such mutations could underlie the widespread pathology in PD, with the precise clinical outcome dependent on their type and the timing and location of their occurrence. We recently reported a novel SNCA mutation (c.150T>G, p.H50Q) in PD brain-derived DNA. To determine if there was mosaicism for this, a PCR and cloning strategy was used to take advantage of a nearby heterozygous intronic polymorphism. No evidence of mosaicism was found. High-resolution melting curve analysis of SNCA coding exons, which was shown to be sensitive enough to detect low proportions of 2 known mutations, did not reveal any further mutations in DNA from 28 PD brain-derived samples. We outline the grounds that make the somatic SNCA mutation hypothesis consistent with genetic, embryological, and pathological data. Further studies of brain-derived DNA are warranted and should include DNA from multiple regions and methods for detecting other types of genomic variation. © 2013 Movement Disorder Society

    Blood transcriptomics of drug-na\uefve sporadic Parkinson's disease patients

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder that is clinically defined in terms of motor symptoms. These are preceded by prodromal non-motor manifestations that prove the systemic nature of the disease. Identifying genes and pathways altered in living patients provide new information on the diagnosis and pathogenesis of sporadic PD. METHODS: Changes in gene expression in the blood of 40 sporadic PD patients and 20 healthy controls ("Discovery set") were analyzed by taking advantage of the Affymetrix platform. Patients were at the onset of motor symptoms and before initiating any pharmacological treatment. Data analysis was performed by applying Ranking-Principal Component Analysis, PUMA and Significance Analysis of Microarrays. Functional annotations were assigned using GO, DAVID, GSEA to unveil significant enriched biological processes in the differentially expressed genes. The expressions of selected genes were validated using RT-qPCR and samples from an independent cohort of 12 patients and controls ("Validation set"). RESULTS: Gene expression profiling of blood samples discriminates PD patients from healthy controls and identifies differentially expressed genes in blood. The majority of these are also present in dopaminergic neurons of the Substantia Nigra, the key site of neurodegeneration. Together with neuronal apoptosis, lymphocyte activation and mitochondrial dysfunction, already found in previous analysis of PD blood and post-mortem brains, we unveiled transcriptome changes enriched in biological terms related to epigenetic modifications including chromatin remodeling and methylation. Candidate transcripts as CBX5, TCF3, MAN1C1 and DOCK10 were validated by RT-qPCR. CONCLUSIONS: Our data support the use of blood transcriptomics to study neurodegenerative diseases. It identifies changes in crucial components of chromatin remodeling and methylation machineries as early events in sporadic PD suggesting epigenetics as target for therapeutic intervention
    corecore