349 research outputs found
Consistent modeling of a single PEM fuel cell using Onsager's principle
In this paper a novel approach is proposed for a three-dimensional (3D) modeling of a High Temperature Exchange Membrane Fuel Cell (HTPEMFC). This new modeling is based on Onsager's principle of minimum energy dissipation that is applicable for near equilibrium and coupled irreversible systems. In particular, for low conductivity membranes, this leads to a one directional proton movement through the membrane. The resulting equations are numerically solved for a real single cell geometry, using a 3D finite volume discretization. Results are analyzed and validated against experimental data
Consistent behavior of Eulerian Monte Carlo fields at Low Reynolds Numbers
A slightly different version of the Eulerian Monte Carlo method (EMC) (Valiño, Flow Turbul. Combust. 60, 157–172, (1998)) is presented in this paper. The EMC method is an effective stochastic numerical approach to solve the Probability Density Function (PDF) of reacting species in turbulent flows. In contrast with the original formulation, the spurious Wiener term associated with the molecular diffusion is removed, by splitting the micro-mixing into mean gradient and fluctuating contributions. The evolution of the EMC fields representing the PDF in the proposed formulation is then consistent in the laminar limit: the EMC fields follow the same standard convection-diffusion equation, without any stochastic terms
Parameter characterization of HTPEMFC using numerical simulation and genetic algorithms
This paper develops a novel approach to the parameterisation of high temperature exchange membrane fuel cells (HTPEMFC) with limited and non-invasive measurements. The proposed method allows an effective identification of electrochemical parameters for three-dimensional fuel cell models by combining computational simulation tools and genetic algorithms. To avoid each evaluation undertaken by the optimisation method involving a complete computational simulation of the 3D model, a strategy has been designed that, thanks to an iterative process, makes it possible to decouple the fluid dynamic resolution from the electrochemistry one. Two electrochemical models have been incorporated into these tools to describe the behaviour of the catalyst layer, Butler-Volmer and spherical aggregate. For each one, a case study has been carried out to validate the results by comparing them with empirical data in the first model and with data generated by numerical simulation in the second. Results show that, from a set of measured operating conditions, it is possible to identify a unique set of electrochemical parameters that fits the 3D model to the target polarisation curve. The extension of this framework can be used to systematically estimate any model parameter in order to reduce the uncertainty in 3D simulation predictions. © 2021 The Author(s
Linear Toric Fibrations
These notes are based on three lectures given at the 2013 CIME/CIRM summer
school. The purpose of this series of lectures is to introduce the notion of a
toric fibration and to give its geometrical and combinatorial
characterizations. Polarized toric varieties which are birationally equivalent
to projective toric bundles are associated to a class of polytopes called
Cayley polytopes. Their geometry and combinatorics have a fruitful interplay
leading to fundamental insight in both directions. These notes will illustrate
geometrical phenomena, in algebraic geometry and neighboring fields, which are
characterized by a Cayley structure. Examples are projective duality of toric
varieties and polyhedral adjunction theory
Tracing oncogene-driven remodelling of the intestinal stem cell niche
Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1–3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model—the Red2Onco system—that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones
Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins
Global Policy Barriers and Enablers to Exercise and Physical Activity in Kidney Care
Objective: Impairment in physical function and physical performance leads to decreased independence and health-related quality of life in people living with chronic kidney disease and end-stage kidney disease. Physical activity and exercise in kidney care are not priorities in policy development. We aimed to identify global policy-related enablers, barriers, and strategies to increase exercise participation and physical activity behavior for people living with kidney disease. Design and Methods: Guided by the Behavior Change Wheel theoretical framework, 50 global renal exercise experts developed policy barriers and enablers to exercise program implementation and physical activity promotion in kidney care. The consensus process consisted of developing themes from renal experts from North America, South America, Continental Europe, United Kingdom, Asia, and Oceania. Strategies to address enablers and barriers were identified by the group, and consensus was achieved. Results: We found that policies addressing funding, service provision, legislation, regulations, guidelines, the environment, communication, and marketing are required to support people with kidney disease to be physically active, participate in exercise, and improve health-related quality of life. We provide a global perspective and highlight Japanese, Canadian, and other regional examples where policies have been developed to increase renal physical activity and rehabilitation. We present recommendations targeting multiple stakeholders including nephrologists, nurses, allied health clinicians, organizations providing renal care and education, and renal program funders. Conclusions: We strongly recommend the nephrology community and people living with kidney disease take action to change policy now, rather than idly waiting for indisputable clinical trial evidence that increasing physical activity, strength, fitness, and function improves the lives of people living with kidney disease
Discovery of Diverse Small Molecule Chemotypes with Cell-Based PKD1 Inhibitory Activity
Protein kinase D (PKD) is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC50s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z)-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidene)propan-2-one; CID 2011756, 5-(3-chlorophenyl)-N-[4-(morpholin-4-ylmethyl)phenyl]furan-2-carboxamide; CID 5389142, (6Z)-6-[4-(3-aminopropylamino)-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one) inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target
- …