146 research outputs found

    General solution for Hamiltonians with extended cubic and quartic potentials

    Full text link
    We integrate with hyperelliptic functions a two-particle Hamiltonian with quartic potential and additionnal linear and nonpolynomial terms in the Liouville integrable cases 1:6:1 and 1:6:8.Comment: LaTex 2e. To appear, Theoretical and Mathematical Physics 200

    On the exact solutions of the Bianchi IX cosmological model in the proper time

    Full text link
    It has recently been argued that there might exist a four-parameter analytic solution to the Bianchi IX cosmological model, which would extend the three-parameter solution of Belinskii et al. to one more arbitrary constant. We perform the perturbative Painlev\'e test in the proper time variable, and confirm the possible existence of such an extension.Comment: 8 pages, no figure, standard Latex, to appear in Regular and chaotic dynamics (1998

    Solitons from a direct point of view: padeons

    Get PDF
    AbstractA systematic approach to soliton interaction is presented in terms of a particular class of solitary waves (padeons) which are linear fractions with respect to the nonlinearity parameter ϵ. A straightforward generalization of the padeon to higher order rational fractions (multipadeon) yields a natural ansatz for N-soliton solutions. This ansatz produces multisoliton formulas in terms of an ‘interaction matrix’ A. The structure of the matrix gives some insight into the hidden IST-properties of a familiar set of ‘integrable’ equations (KdV, Boussinesq, MKdV, sine-Gordon, nonlinear Schrödinger). The analysis suggests a ‘padeon’ working definition of the soliton, leading to an explicit set of necessary conditions on the padeon equation

    Integration of a generalized H\'enon-Heiles Hamiltonian

    Full text link
    The generalized H\'enon-Heiles Hamiltonian H=1/2(PX2+PY2+c1X2+c2Y2)+aXY2bX3/3H=1/2(P_X^2+P_Y^2+c_1X^2+c_2Y^2)+aXY^2-bX^3/3 with an additional nonpolynomial term μY2\mu Y^{-2} is known to be Liouville integrable for three sets of values of (b/a,c1,c2)(b/a,c_1,c_2). It has been previously integrated by genus two theta functions only in one of these cases. Defining the separating variables of the Hamilton-Jacobi equations, we succeed here, in the two other cases, to integrate the equations of motion with hyperelliptic functions.Comment: LaTex 2e. To appear, Journal of Mathematical Physic

    A q-analogue of gl_3 hierarchy and q-Painleve VI

    Full text link
    A q-analogue of the gl_3 Drinfel'd-Sokolov hierarchy is proposed as a reduction of the q-KP hierarchy. Applying a similarity reduction and a q-Laplace transformation to the hierarchy, one can obtain the q-Painleve VI equation proposed by Jimbo and Sakai.Comment: 14 pages, IOP style, to appear in J. Phys. A Special issue "One hundred years of Painleve VI

    Completeness of the cubic and quartic H\'enon-Heiles Hamiltonians

    Full text link
    The quartic H\'enon-Heiles Hamiltonian H=(P12+P22)/2+(Ω1Q12+Ω2Q22)/2+CQ14+BQ12Q22+AQ24+(1/2)(α/Q12+β/Q22)γQ1H = (P_1^2+P_2^2)/2+(\Omega_1 Q_1^2+\Omega_2 Q_2^2)/2 +C Q_1^4+ B Q_1^2 Q_2^2 + A Q_2^4 +(1/2)(\alpha/Q_1^2+\beta/Q_2^2) - \gamma Q_1 passes the Painlev\'e test for only four sets of values of the constants. Only one of these, identical to the traveling wave reduction of the Manakov system, has been explicitly integrated (Wojciechowski, 1985), while the three others are not yet integrated in the generic case (α,β,γ)(0,0,0)(\alpha,\beta,\gamma)\not=(0,0,0). We integrate them by building a birational transformation to two fourth order first degree equations in the classification (Cosgrove, 2000) of such polynomial equations which possess the Painlev\'e property. This transformation involves the stationary reduction of various partial differential equations (PDEs). The result is the same as for the three cubic H\'enon-Heiles Hamiltonians, namely, in all four quartic cases, a general solution which is meromorphic and hyperelliptic with genus two. As a consequence, no additional autonomous term can be added to either the cubic or the quartic Hamiltonians without destroying the Painlev\'e integrability (completeness property).Comment: 10 pages, To appear, Theor.Math.Phys. Gallipoli, 34 June--3 July 200

    A reduction of the resonant three-wave interaction to the generic sixth Painleve' equation

    Full text link
    Among the reductions of the resonant three-wave interaction system to six-dimensional differential systems, one of them has been specifically mentioned as being linked to the generic sixth Painleve' equation P6. We derive this link explicitly, and we establish the connection to a three-degree of freedom Hamiltonian previously considered for P6.Comment: 13 pages, 0 figure, J. Phys. A Special issue "One hundred years of Painleve' VI
    corecore