146 research outputs found
General solution for Hamiltonians with extended cubic and quartic potentials
We integrate with hyperelliptic functions a two-particle Hamiltonian with
quartic potential and additionnal linear and nonpolynomial terms in the
Liouville integrable cases 1:6:1 and 1:6:8.Comment: LaTex 2e. To appear, Theoretical and Mathematical Physics 200
On the exact solutions of the Bianchi IX cosmological model in the proper time
It has recently been argued that there might exist a four-parameter analytic
solution to the Bianchi IX cosmological model, which would extend the
three-parameter solution of Belinskii et al. to one more arbitrary constant. We
perform the perturbative Painlev\'e test in the proper time variable, and
confirm the possible existence of such an extension.Comment: 8 pages, no figure, standard Latex, to appear in Regular and chaotic
dynamics (1998
Solitons from a direct point of view: padeons
AbstractA systematic approach to soliton interaction is presented in terms of a particular class of solitary waves (padeons) which are linear fractions with respect to the nonlinearity parameter ϵ. A straightforward generalization of the padeon to higher order rational fractions (multipadeon) yields a natural ansatz for N-soliton solutions. This ansatz produces multisoliton formulas in terms of an ‘interaction matrix’ A. The structure of the matrix gives some insight into the hidden IST-properties of a familiar set of ‘integrable’ equations (KdV, Boussinesq, MKdV, sine-Gordon, nonlinear Schrödinger). The analysis suggests a ‘padeon’ working definition of the soliton, leading to an explicit set of necessary conditions on the padeon equation
Integration of a generalized H\'enon-Heiles Hamiltonian
The generalized H\'enon-Heiles Hamiltonian
with an additional
nonpolynomial term is known to be Liouville integrable for three
sets of values of . It has been previously integrated by genus
two theta functions only in one of these cases. Defining the separating
variables of the Hamilton-Jacobi equations, we succeed here, in the two other
cases, to integrate the equations of motion with hyperelliptic functions.Comment: LaTex 2e. To appear, Journal of Mathematical Physic
A q-analogue of gl_3 hierarchy and q-Painleve VI
A q-analogue of the gl_3 Drinfel'd-Sokolov hierarchy is proposed as a
reduction of the q-KP hierarchy. Applying a similarity reduction and a
q-Laplace transformation to the hierarchy, one can obtain the q-Painleve VI
equation proposed by Jimbo and Sakai.Comment: 14 pages, IOP style, to appear in J. Phys. A Special issue "One
hundred years of Painleve VI
Completeness of the cubic and quartic H\'enon-Heiles Hamiltonians
The quartic H\'enon-Heiles Hamiltonian passes the Painlev\'e test for
only four sets of values of the constants. Only one of these, identical to the
traveling wave reduction of the Manakov system, has been explicitly integrated
(Wojciechowski, 1985), while the three others are not yet integrated in the
generic case . We integrate them by building
a birational transformation to two fourth order first degree equations in the
classification (Cosgrove, 2000) of such polynomial equations which possess the
Painlev\'e property. This transformation involves the stationary reduction of
various partial differential equations (PDEs). The result is the same as for
the three cubic H\'enon-Heiles Hamiltonians, namely, in all four quartic cases,
a general solution which is meromorphic and hyperelliptic with genus two. As a
consequence, no additional autonomous term can be added to either the cubic or
the quartic Hamiltonians without destroying the Painlev\'e integrability
(completeness property).Comment: 10 pages, To appear, Theor.Math.Phys. Gallipoli, 34 June--3 July 200
A reduction of the resonant three-wave interaction to the generic sixth Painleve' equation
Among the reductions of the resonant three-wave interaction system to
six-dimensional differential systems, one of them has been specifically
mentioned as being linked to the generic sixth Painleve' equation P6. We derive
this link explicitly, and we establish the connection to a three-degree of
freedom Hamiltonian previously considered for P6.Comment: 13 pages, 0 figure, J. Phys. A Special issue "One hundred years of
Painleve' VI
- …
