15 research outputs found

    Administration of Vitamin D Metabolites Affects RNA Expression of Xenobiotic Metabolising Enzymes and Function of ABC Transporters in Rats

    Get PDF
    From studies on different species and in cell culture systems, it has been suggested that vitamin D metabolites might affect themetabolism and elimination of xenobiotics. Although most studies performed on rodents and cell cultures report an upregulationof respective enzymes and transporters, data from the literature are inconsistent. Especially results obtained with sheep differ fromthese observations. As vitamin D metabolites are widely used as feed additives or therapeutics in livestock animals, we aimed toassess whether these differences indicate species-specific responses or occurred due to the very high dosages used in the rodentstudies. -erefore, we applied treatment protocols to rats that had been used previously in sheep or cattle. Forty-eight female ratswere divided into three treatment and corresponding placebo groups: (1) a single intraperitoneal injection of 1,25-(OH)2D3 orplacebo 12 h before sacrifice; (2) daily supplementation with 25-OHD3 by oral gavage or placebo for 10 days; and (3) a singleintramuscular injection of vitamin D3 10 days before sacrifice. In contrast to a previous study using sheep, treatment of rats with1,25-dihydroxyvitamin D3 did not result in an upregulation of cytochrome P450 3A isoenzymes (CYP3A), but a decrease wasfound in hepatic and intestinal expressions. In addition, a downregulation of P-glycoprotein (P-gp) and breast cancer resistanceprotein was found in the brain. Taken together, the stimulating effects of vitamin D metabolites on the expression of genesinvolved in the metabolism and elimination of xenobiotics reported previously for rodents and sheep could not be reproduced. Incontrast, we even observed a negative impact on the expression of CYP3A enzymes and their most important regulator, thepregnane X receptor. Most interestingly, we could demonstrate an effect of treatment with 25-hydroxyvitamin D3 and vitamin D3on the functional activity of ileal P-glycoprotein (P-gp) using the Ussing chamber technique.Fil: Klumpp, Karoline. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; AlemaniaFil: Lange, Frauke. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; AlemaniaFil: Muscher-Banse, Alexandra S.. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; AlemaniaFil: Schnepel, Nadine. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; AlemaniaFil: Hansen, Kathrin. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; AlemaniaFil: Lifschitz, Adrian Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Maté, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigación Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigación Veterinaria de Tandil. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Centro de Investigación Veterinaria de Tandil; ArgentinaFil: Wilkens, Mirja. University of Veterinary Medicine Hannover. Institute of Physiology and Cell Biology; Alemani

    Modulation of GCN2/eIF2α/ATF4 Pathway in the Liver and Induction of FGF21 in Young Goats Fed a Protein- and/or Phosphorus-Reduced Diet

    No full text
    Mammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of GCN2 and ATF4 and protein expression of GCN2. Dietary N restriction robustly increased both hepatic FGF21 mRNA expression and circulating FGF21 levels. Accordingly, numerous significant correlations demonstrated the effects of the AA profile on the AAR pathway and confirmed an association. Furthermore, activation of the AAR pathway depended on the sufficient availability of P. When dietary P was restricted, the GCN2/eIF2α/ATF4 pathway was not initiated, and no increase in FGF21 was observed. These results illustrate how the AAR pathway responds to N- and/or P-reduced diets in ruminants, thus demonstrating the complexity of dietary component changes

    Modulation of Intestinal Phosphate Transport in Young Goats Fed a Low Phosphorus Diet

    No full text
    The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates

    Modulation of Intestinal Phosphate Transport in Young Goats Fed a Low Phosphorus Diet

    No full text
    The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates

    Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet

    No full text
    <div><p>Diets fed to ruminants should contain nitrogen (N) as low as possible to reduce feed costs and environmental pollution. Though possessing effective N-recycling mechanisms to maintain the N supply for rumen microbial protein synthesis and hence protein supply for the host, an N reduction caused substantial changes in calcium (Ca) and phosphate homeostasis in young goats including decreased intestinal transepithelial Ca absorption as reported for monogastric species. In contrast to the transcellular component of transepithelial Ca transport, the paracellular route has not been investigated in young goats. Therefore, the aim of the present study was to characterise the effects of dietary N and/or Ca reduction on paracellular transport mechanisms in young goats. Electrophysiological properties of intestinal epithelia were investigated by Ussing chamber experiments. The expression of tight junction (TJ) and adherens junction (AJ) proteins in intestinal epithelia were examined on mRNA level by <i>q</i>PCR and on protein level by western blot analysis. Dietary N reduction led to a segment specific increase in tissue conductances in the proximal jejunum which might be linked to concomitantly decreased expression of cadherin 17 mRNA. Expression of occludin (OCLN) and zonula occludens protein 1 was increased in mid jejunal epithelia of N reduced fed goats on mRNA and partly on protein level. Reduced dietary Ca supply resulted in a segment specific increase in claudin 2 and claudin 12 expression and decreased the expression of OCLN which might have been mediated at least in part by calcitriol. These data show that dietary N as well as Ca reduction affected expression of TJ and AJ proteins in a segment specific manner in young goats and may thus be involved in modulation of paracellular Ca permeability.</p></div

    Representative single immunohistochemistry for CLDN2 in mid jejunal epithelial paraffin sections of (N+/Ca+) goats.

    No full text
    <p>CLDN2 is detectable apically (arrows) and in lateral membranes of enterocytes (arrowheads) in crypts. No unspecific staining was detected in the negative control (insert). Scale bars: 100 μm.</p

    Effect of mucosal addition of 20 mM TAP in the proximal jejunum.

    No full text
    <p>TAP, 2,4,6 triaminopyrimidin. Effect on tissue conductance (G<sub>t</sub>) (a). Inhibition of G<sub>t</sub> statistically quantified by paired t-test (b).</p
    corecore