90 research outputs found
An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance
Introduction: Pseudomonas aeruginosa nosocomial pneumonia (Pa-NP) is associated with considerable morbidity, prolonged hospitalization, increased costs, and mortality. Methods: We conducted a retrospective cohort study of adult patients with Pa-NP to determine 1) risk factors for multidrug-resistant (MDR) strains and 2) whether MDR increases the risk for hospital death. Twelve hospitals in 5 countries (United States, n = 3; France, n = 2; Germany, n = 2; Italy, n = 2; and Spain, n = 3) participated. We compared characteristics of patients who had MDR strains to those who did not and derived regression models to identify predictors of MDR and hospital mortality. Results: Of 740 patients with Pa-NP, 226 patients (30.5%) were infected with MDR strains. In multivariable analyses, independent predictors of multidrug-resistance included decreasing age (adjusted odds ratio [AOR] 0.91, 95% confidence interval [CI] 0.96-0.98), diabetes mellitus (AOR 1.90, 95% CI 1.21-3.00) and ICU admission (AOR 1.73, 95% CI 1.06-2.81). Multidrug-resistance, heart failure, increasing age, mechanical ventilation, and bacteremia were independently associated with in-hospital mortality in the Cox Proportional Hazards Model analysis. Conclusions: Among patients with Pa-NP the presence of infection with a MDR strain is associated with increased in-hospital mortality. Identification of patients at risk of MDR Pa-NP could facilitate appropriate empiric antibiotic decisions that in turn could lead to improved hospital survival
Mechanical ventilation: lessons from the ARDSNet trial
The acute respiratory distress syndrome (ARDS) is an inflammatory disease of the lungs characterized clinically by bilateral pulmonary infiltrates, decreased pulmonary compliance and hypoxemia. Although supportive care for ARDS seems to have improved over the past few decades, few studies have shown that any treatment can decrease mortality for this deadly syndrome. In the 4 May 2000 issue of New England Journal of Medicine, the results of an NIH-sponsored trial were presented; they demonstrated that the use of a ventilatory strategy that minimizes ventilator-induced lung injury leads to a 22% decrease in mortality. The implications of this study with respect to clinical practice, further ARDS studies and clinical research in the critical care setting are discussed
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Comparison of the effect of lps and pam3 on ventilated lungs
<p>Abstract</p> <p>Background</p> <p>While lipopolysaccharide (LPS) from Gram-negative bacteria has been shown to augment inflammation in ventilated lungs information on the effect of Gram-positive bacteria is lacking. Therefore the effect of LPS and a lipopetide from Gram-positive bacteria, PAM3, on ventilated lungs were investigated.</p> <p>Methods</p> <p>C57/Bl6 mice were mechanically ventilated. Sterile saline (sham) and different concentrations of LPS (1 μg and 5 μg) and PAM3 (50 nM and 200 nM) were applied intratracheally. Lung function parameters and expression of MIP-2 and TNFα as well as influx of neutrophils were measured.</p> <p>Results</p> <p>Mechanical ventilation increased resistance and decreased compliance over time. PAM3 but not LPS significantly increased resistance compared to sham challenge (P < 0.05). Both LPS and PAM3 significantly increased MIP-2 and TNFα mRNA expression compared to sham challenge (P < 0.05). The numbers of neutrophils were significantly increased after LPS at a concentration of 5 μg compared to sham (P < 0.05). PAM3 significantly increased the numbers of neutrophils at both concentrations compared to sham (P < 0.05).</p> <p>Conclusions</p> <p>These data suggest that PAM3 similar to LPS enhances ventilator-induced inflammation. Moreover, PAM3 but not LPS increases pulmonary resistance in ventilated lungs. Further studies are warranted to define the role of lipopetides in ventilator-associated lung injury.</p
Long-term medical utilization following ventilator-associated pneumonia in acute stroke and traumatic brain injury patients: a case-control study
<p>Abstract</p> <p>Background</p> <p>The economic burden of ventilator-associated pneumonia (VAP) during the index hospitalization has been confirmed in previous studies. However, the long-term economic impact is still unclear. The aim of this study is to examine the effect of VAP on medical utilization in the long term.</p> <p>Methods</p> <p>This is a retrospective case-control study. Study subjects were patients experiencing their first traumatic brain injury, acute hemorrhagic stroke, or acute ischemic stroke during 2004. All subjects underwent endotracheal intubation in the emergency room (ER) on the day of admission or the day before admission, were transferred to the intensive care unit (ICU) and were mechanically ventilated for 48 hours or more. A total of 943 patients who developed VAP were included as the case group, and each was matched with two control patients without VAP by age ( ± 2 years), gender, diagnosis, date of admission ( ± 1 month) and hospital size, resulting in a total of 2,802 patients in the study. Using robust regression and Poisson regression models we examined the effect of VAP on medical utilization including hospitalization expenses, outpatient expenses, total medical expenses, number of ER visits, number of readmissions, number of hospitalization days and number of ICU days, during the index hospitalization and during the following 2-year period.</p> <p>Results</p> <p>Patients in the VAP group had higher hospitalization expenses, longer length of stay in hospital and in ICU, and a greater number of readmissions than the control group patients.</p> <p>Conclusions</p> <p>VAP has a significant impact on medical expenses and utilization, both during the index hospitalization during which VAP developed and in the longer term.</p
Very Low Tidal Volume Ventilation with Associated Hypercapnia - Effects on Lung Injury in a Model for Acute Respiratory Distress Syndrome
BACKGROUND: Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome. METHODOLOGY/PRINCIPAL FINDINGS: In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8-10 ml/kg/PaCO(2) = 40 mm Hg; Group 2: tidal volume = 4-5 ml/kg/PaCO(2) = 80 mm Hg; Group 3: tidal volume = 3-4 ml/kg/PaCO(2) = 120 mm Hg; Group 4: tidal volume = 2-3 ml/kg/PaCO(2) = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO(2) were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4-5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy. CONCLUSION: Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4-5 ml/kg/PaCO(2) 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained
Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice
INTRODUCTION: Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T) = 8 mL/kg or high tidal volume V(T) = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cm H(2)O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation
The value of polyurethane-cuffed endotracheal tubes to reduce microaspiration and intubation-related pneumonia: a systematic review of laboratory and clinical studies
Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion
- …
