151 research outputs found
Evolution and models for skewed parton distributions
We discuss the structure of the ``forward visible'' (FW) parts of double and
skewed distributions related to usual distributions through reduction
relations. We use factorized models for double distributions (DDs) f(x, alpha)
in which one factor coincides with the usual (forward) parton distribution and
another specifies the profile characterizing the spread of the longitudinal
momentum transfer. The model DDs are used to construct skewed parton
distributions (SPDs). For small skewedness, the FW parts of SPDs H(x, xi) can
be obtained by averaging forward parton densities f(x- xi alpha) with the
weight rho (alpha) coinciding with the profile function of the double
distribution f(x, alpha) at small x. We show that if the x^n moments f_n
(alpha) of DDs have the asymptotic (1-alpha^2)^{n+1} profile, then the
alpha-profile of f (x,alpha) for small x is completely determined by small-x
behavior of the usual parton distribution. We demonstrate that, for small xi,
the model with asymptotic profiles for f_n (alpha) is equivalent to that
proposed recently by Shuvaev et al., in which the Gegenbauer moments of SPDs do
not depend on xi. We perform a numerical investigation of the evolution
patterns of SPDs and gave interpretation of the results of these studies within
the formalism of double distributions.Comment: 24 pages, Latex, 12 figure
Power-Law Wave Functions and Generalized Parton Distributions for Pion
We propose a model for generalized parton distributions of the pion based on
the power-law ansatz for the effective light-cone wave function.Comment: 27 pages, Latex; Revised and Extended Version, to be published in
Phys. Rev.
Plasma measurements conducted in the vincinity of Venus on the spacecraft VENERA-4
Plasma flux measurements in vicinity of Venus by charged particle traps on Venera-4 spacecraf
Comparison of Certain Results of Simultaneous Measurements of Solar Wind Characteristics on Spacecrafts ''Venera-3'' and ''Pioneer-6''
Ion concentration, ion velocity, and other solar wind characteristics measured simultaneously aboard spacecraf
Signs of crossing by the moon of the earth's magnetosphere tail according to data of charged particle traps on the first artificial satellite of the moon /Luna-10/
Space probe charged particle data evidence for moon crossing of Earth magnetospheric tai
Non-local anomaly of the axial-vector current for bound states
We demonstrate that the amplitude does not vanish in the limit of zero quark masses. This
represents a new kind of violation of the classical equation of motion for the
axial current and should be interpreted as the axial anomaly for bound states.
The anomaly emerges in spite of the fact that the one loop integrals are
ultraviolet-finite as guaranteed by the presence of the bound-state wave
function. As a result, the amplitude behaves like in the limit of
a large momentum of the current. This is to be compared with the amplitude
which remains
finite in the limit .
The observed effect leads to the modification of the classical equation of
motion of the axial-vector current in terms of the non-local operator and can
be formulated as a non-local axial anomaly for bound states.Comment: revtex, 4 pages, numerical value for in Eq. (19) is
corrected, Eqs. (22) and (23) are modified. New references added. Results
remain unchange
Π‘ΠΈΠ½ΡΠ΅Π· 7-Π°ΡΠΈΠ»-6,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5(4H)-ΠΎΠ½ΡΠ²
Arylmethyliden derivatives of 2,2-dimethyl-1,3-dioxane-4,6-dione; Meldrum`s acid; 6,7-dihydro-7-aryltetrazolo [1,5-a]pyrimidin-5(4H)-ones; synthesis; pharmacological activityCyclocondensations of 1H-tetrazol-5-amine with methylcinnamates, arylmethyliden malonic acids and arylmethyliden derivatives of 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum`s acid) proceed regioselectively and lead to formation of 7-aryl-6,7-dyhidrotetrazolo[1,5-a]pyrimidin-5(4H)-ones. The direction of cyclization corresponds to the interaction of the carbon atom in Ξ²-position of the unsaturated carbonyl compounds with the endocyclic nitrogen atom and the carbonyl group with amino group in the aminoazole molecule. Compounds of the isomeric structure in any of the experiments have been not identified. The structures and composition of the newly synthesized tetrazolo[1,5-a]pyrimidin-5(4H)-ones have been confirmed by elemental analysis, infrared spectroscopy (IR), nuclear magnetic resonance on protones (1H NMR) and mass spectra data. Virtual screening of 7-aryl-6,7-dihydrotetrazolo[1,5-a]pyrimidin-5(4H)-ones carried out using the PASS programme for 780 types of the pharmacological action has demonstrated that it is expedient to test these compounds by their analgesic and anti-inflammatory activity, as well as as potential agents for the treatment of heart failure.Π¦ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ 1Π-ΡΠ΅ΡΡΠ°Π·ΠΎΠ»-5-Π°ΠΌΠΈΠ½Π° Ρ ΠΌΠ΅ΡΠΈΠ»ΡΠΈΠ½Π½Π°ΠΌΠ°ΡΠ°ΠΌΠΈ, Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»ΠΈΠ΄Π΅Π½ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΡΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ ΠΈ Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»ΠΈΠ΄Π΅Π½ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠΌΠΈ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΠΈΠΎΠΊΡΠ°Π½-4,6-Π΄ΠΈΠΎΠ½Π° (ΠΊΠΈΡΠ»ΠΎΡΡ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ°) ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡ ΡΠ΅Π³ΠΈΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ 7-Π°ΡΠΈΠ»-6,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½- 5(4Π)-ΠΎΠ½ΠΎΠ². ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ»ΡΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π°ΡΠΎΠΌΠ° ΡΠ³Π»Π΅ΡΠΎΠ΄Π°, Π½Π°Ρ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎΡΡ Π² Ξ²-ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π΅Π½Π°ΡΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ, Ρ ΡΠ½Π΄ΠΎΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°ΡΠΎΠΌΠΎΠΌ Π°Π·ΠΎΡΠ°, Π° ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ β Ρ Π°ΠΌΠΈΠ½ΠΎΠ³ΡΡΠΏΠΏΠΎΠΉ Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π΅ Π°ΠΌΠΈΠ½ΠΎΠ°Π·ΠΎΠ»Π°. Π‘ΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΈΠ·ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² Π½Π΅ Π²ΡΡΠ²Π»Π΅Π½Ρ. Π‘ΠΎΡΡΠ°Π² ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5(4Π)-ΠΎΠ½ΠΎΠ² Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΈΠ½ΡΡΠ°ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ (ΠΠ), ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ° Π½Π° ΠΏΡΠΎΡΠΎΠ½Π°Ρ
(Π―ΠΠ 1Π) ΠΈ ΠΌΠ°ΡΡΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΠΈΡΡΡΠ°Π»ΡΠ½ΡΠΉ ΡΠΊΡΠΈΠ½ΠΈΠ½Π³ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
7-Π°ΡΠΈΠ»-6,7-Π΄ΠΈΠ³ΠΈΠ΄ΡΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½-5(4Π)-ΠΎΠ½ΠΎΠ², ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ PASS ΠΏΠΎ 780 Π²ΠΈΠ΄Π°ΠΌ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π° Π΄Π»Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ.Π¦ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ 1Π-ΡΠ΅ΡΡΠ°Π·ΠΎΠ»-5-Π°ΠΌΡΠ½Ρ Π· ΠΌΠ΅ΡΠΈΠ»ΡΠΈΠ½Π°ΠΌΠ°ΡΠ°ΠΌΠΈ, Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»ΡΠ΄Π΅Π½ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΈΠΌΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ°ΠΌΠΈ ΡΠ° Π°ΡΠΈΠ»ΠΌΠ΅ΡΠΈΠ»ΡΠ΄Π΅Π½ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΠΌΠΈ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½Ρ (ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ°) Π²ΡΠ΄Π±ΡΠ²Π°ΡΡΡΡΡ ΡΠ΅Π³ΡΠΎΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎ ΡΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡ Π΄ΠΎ ΡΡΠ²ΠΎΡΠ΅Π½Π½Ρ 7-Π°ΡΠΈΠ»-6,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5(4Π)-ΠΎΠ½ΡΠ².ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΡΡΡΡ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠ»ΡΡΡ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°Ρ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π°ΡΠΎΠΌΠ° ΠΊΠ°ΡΠ±ΠΎΠ½Ρ Ρ Ξ²-ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ Π½Π΅Π½Π°ΡΠΈΡΠ΅Π½ΠΎΡ ΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»ΡΠ½ΠΎΡ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π· Π΅Π½Π΄ΠΎΡΠΈΠΊΠ»ΡΡΠ½ΠΈΠΌ Π°ΡΠΎΠΌΠΎΠΌ Π½ΡΡΡΠΎΠ³Π΅Π½Ρ, Π° ΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»ΡΠ½ΠΎΡ Π³ΡΡΠΏΠΈ β Π· Π°ΠΌΡΠ½ΠΎΠ³ΡΡΠΏΠΎΡ Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π°ΠΌΡΠ½ΠΎΠ°Π·ΠΎΠ»Ρ. Π‘ΠΏΠΎΠ»ΡΠΊ ΡΠ·ΠΎΠΌΠ΅ΡΠ½ΠΎΡ Π±ΡΠ΄ΠΎΠ²ΠΈ Π² ΠΆΠΎΠ΄Π½ΠΎΠΌΡ Π· Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡΠ² Π½Π΅ Π²ΠΈΡΠ²Π»Π΅Π½ΠΎ. Π‘ΠΊΠ»Π°Π΄ ΡΠ° Π±ΡΠ΄ΠΎΠ²Ρ Π²ΠΏΠ΅ΡΡΠ΅ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5(4Π)-ΠΎΠ½ΡΠ² Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΡΠ·Ρ, ΡΠ½ΡΡΠ°ΡΠ΅ΡΠ²ΠΎΠ½ΠΎΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ (ΠΠ§), ΡΠ΄Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΡ Π½Π° ΠΏΡΠΎΡΠΎΠ½Π°Ρ
(Π―ΠΠ 1Π) ΡΠ° ΠΌΠ°Ρ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΡΡ. ΠΡΡΡΡΠ°Π»ΡΠ½ΠΈΠΉ ΡΠΊΡΠΈΠ½ΡΠ½Π³ 7-Π°ΡΠΈΠ»-6,7-Π΄ΠΈΠ³ΡΠ΄ΡΠΎΡΠ΅ΡΡΠ°Π·ΠΎΠ»ΠΎ[1,5-a]ΠΏΡΡΠΈΠΌΡΠ΄ΠΈΠ½-5(4Π)-ΠΎΠ½ΡΠ², ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ ΡΠ· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΈ PASS Π·Π° 780 Π²ΠΈΠ΄Π°ΠΌΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π΄ΡΡ, Π·Π°ΡΠ²ΡΠ΄ΡΠΈΠ², ΡΠΎ ΡΡ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π΄ΠΎΡΡΠ»ΡΠ½ΠΎ ΡΠ΅ΡΡΡΠ²Π°ΡΠΈ Π·Π° ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π°Π½Π°Π»Π³Π΅ΡΠΈΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, Π° ΡΠ°ΠΊΠΎΠΆ ΡΠΊ ΠΏΠΎΡΠ΅Π½ΡΡΠΉΠ½Ρ Π·Π°ΡΠΎΠ±ΠΈ Π΄Π»Ρ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ ΡΠ΅ΡΡΠ΅Π²ΠΎΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠ½ΠΎΡΡΡ
DVCS amplitude at tree level: Transversality, twist-3, and factorization
We study the virtual Compton amplitude in the generalized Bjorken region (q^2
-> Infinity, t small) in QCD by means of a light-cone expansion of the product
of e.m. currents in string operators in coordinate space. Electromagnetic gauge
invariance (transversality) is maintained by including in addition to the
twist-2 operators 'kinematical' twist-3 operators which appear as total
derivatives of twist-2 operators. The non-forward matrix elements of the
elementary twist-2 operators are parametrized in terms of two-variable spectral
functions (double distributions), from which twist-2 and 3 skewed distributions
are obtained through reduction formulas. Our approach is equivalent to a
Wandzura-Wilczek type approximation for the twist-3 skewed distributions. The
resulting Compton amplitude is manifestly transverse up to terms of order
t/q^2. We find that in this approximation the tensor amplitude for longitudinal
polarization of the virtual photon is finite, while the one for transverse
polarization contains a divergence already at tree level. However, this
divergence has zero projection on the polarization vector of the final photon,
so that the physical helicity amplitudes are finite.Comment: 34 pages, revtex, 1 eps figure included using epsf. Misprints
corrected, one reference adde
ΠΠΎΠΌΡΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΡΡ ΡΠ·Π°ΡΠΈΠ½ΡΠ² Π· 5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»Π°ΠΌΠΈ ΡΠ° 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½ΠΎΠΌ
Aim. To determine the direction of the interaction of isatins with 5-amino-pyrazoles and 2,2-dimethyl-1,3-dioxane-4,6-dione under different conditions.Results and discussion. The domino-reactions of isatins, 5-aminopyrazoles and 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrumβs acid) in the alcoholic medium are completed by formation of a mixture of pyrazolo[3,4-b]pyridine-4-spiroindolinones and 3-(5-aminopyrazol-3-yl)-3-hydroxy-2-oxindolines with the predominant content of spiro compounds. 3-(5-Aminopyrazol-4-yl)-3-hydroxy-2-oxindolines may turn into pyrazolo[3,4-b]pyridine-4-spiroindolinones very slowly only as a result of retrograde fragmentation to isatin and aminopyrazole in the presence of Meldrumβs acid.Experimental part. The mixtures of pyrazolo[3,4-b]pyridine-4-spiroindolinones and 3-(5-aminopyrazol-3-yl)-3-hydroxy-2-oxindolines separated by crystallization were obtained by boiling in methanol of the equimolar quantity of isatins, 5-aminopyrazoles and Meldrumβs acids. The yield for spiro compounds is 26-82 %, and for 3-(5-aminopyrazole-3-yl)-3-hydroxy-2-oxindolines it is 5-23 %. The transformation of the latter into the spiro compound in the presence of Meldrumβs acid occurs with prolonged boiling in the alcoholic medium and is accompanied with extremely low yields. The structure of all compounds synthesized has been proven by 1H NMR, mass spectra and elemental analysis.Conclusions. It has been found that in the three-component reactions of isatins, 5-aminopyrazoles and 2,2-dimethyl-1,3-dioxane-4,6-dione there are two competing directions of the interaction of isatin with nucleophiles. One of them is the nucleophilic addition of the C4 reaction center of aminopyrazole to the carbonyl group of isatin, which results in 3-(5-aminopyrazol-4-yl)-3-hydroxy-2-oxidolines. Another one is the Knoevenagel condensation of isatin with dioxane-4,6-dione β a domino process that starts formation of the predominant reaction products β pyrazolo[3,4-b]pyridine-4-spiroindolinones.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΠ·Π°ΡΠΈΠ½ΠΎΠ² Ρ 5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»Π°ΠΌΠΈ ΠΈ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΠΈΠΎΠΊΡΠ°Π½-4,6-Π΄ΠΈΠΎΠ½ΠΎΠΌ Π² ΡΠ°Π·Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΠΎΠΌΠΈΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΈΠ·Π°ΡΠΈΠ½ΠΎΠ², 5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎΠ² ΠΈ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΠΈΠΎΠΊΡΠ°Π½-4,6-Π΄ΠΈΠΎΠ½Π° (ΠΊΠΈΡΠ»ΠΎΡΡ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ°) Π² ΡΠΏΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΡΠ΅Π΄Π΅ Π·Π°Π²Π΅ΡΡΠ°ΡΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΌΠ΅ΡΠ΅ΠΉ ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΠΈΡΠΎΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ½ΠΎΠ² ΠΈ 3-(5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»-3-ΠΈΠ»)-3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ² Ρ ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠΏΠΈΡΠΎ-ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ. 3-(5-ΠΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»-4-ΠΈΠ»)-3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½Ρ Π»ΠΈΡΡ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠ΅ΡΡΠΎΡΠ°ΡΠΏΠ°Π΄Π° Π½Π° ΠΈΡΡ
ΠΎΠ΄Π½ΡΠ΅ ΠΈΠ·Π°ΡΠΈΠ½ ΠΈ Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ» Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° ΠΌΠΎΠ³ΡΡ ΠΎΡΠ΅Π½Ρ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ Ρ Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ Π²ΡΡ
ΠΎΠ΄Π°ΠΌΠΈ ΠΏΡΠ΅Π²ΡΠ°ΡΠ°ΡΡΡΡ Π² ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΠΈΡΠΎΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ½Ρ.ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ. ΠΠΈΠΏΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π² ΠΌΠ΅ΡΠ°Π½ΠΎΠ»Π΅ ΡΠΊΠ²ΠΈΠΌΠΎΠ»ΡΠ½ΡΡ
ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ² ΠΈΠ·Π°ΡΠΈΠ½ΠΎΠ², 5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎΠ² ΠΈ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠΌΠ΅ΡΠΈ ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΠΈΡΠΎΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ½ΠΎΠ² ΠΈ 3-(5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»-3-ΠΈΠ»)-3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ. ΠΡΡ
ΠΎΠ΄ ΡΠΏΠΈΡΠΎ-ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 26-82 %, Π° 3-(5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»-3-ΠΈΠ»)-3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ² β 5-23 %. ΠΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ
Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° Π² ΡΠΏΠΈΡΠΎ-ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΊΠΈΠΏΡΡΠ΅Π½ΠΈΠΈ Π² ΡΠΏΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΠΈ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΊΡΠ°ΠΉΠ½Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ Π²ΡΡ
ΠΎΠ΄Π°ΠΌΠΈ. Π‘ΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠΎΡΡΠ°Π² Π²ΡΠ΅Ρ
ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ Π΄Π°Π½Π½ΡΠΌΠΈ Π―ΠΠ 1Π, ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠ² ΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ.ΠΡΠ²ΠΎΠ΄Ρ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΡΠ΅Π°ΠΊΡΠΈΡΡ
ΠΈΠ·Π°ΡΠΈΠ½ΠΎΠ², 5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎΠ² ΠΈ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΠΈΠΎΠΊΡΠ°Π½-4,6-Π΄ΠΈΠΎΠ½Π° ΡΠ΅Π°Π»ΠΈΠ·ΡΡΡΡΡ Π΄Π²Π° ΠΊΠΎΠ½ΠΊΡΡΠΈΡΡΡΡΠΈΡ
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈΠ·Π°ΡΠΈΠ½Π° Ρ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»Π°ΠΌΠΈ. ΠΠ΄Π½ΠΎ ΠΈΠ· Π½ΠΈΡ
β Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ»ΡΠ½ΠΎΠ΅ ΠΏΡΠΈΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π‘4 ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ° Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»Π° ΠΊ ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΠΈΠ·Π°ΡΠΈΠ½Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ 3-(5-Π°ΠΌΠΈΠ½ΠΎΠΏΠΈΡΠ°Π·ΠΎΠ»-4-ΠΈΠ»)-3-Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½Π°ΠΌ. Π Π²ΡΠΎΡΠΎΠ΅ β ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΡ ΠΈΠ·Π°ΡΠΈΠ½Π° Ρ Π΄ΠΈΠΎΠΊΡΠ°Π½-4,6-Π΄ΠΈΠΎΠ½ΠΎΠΌ ΠΏΠΎ ΠΠ½Π΅Π²Π΅Π½Π°Π³Π΅Π»Ρ ΠΈΠ½ΠΈΡΠΈΠΈΡΡΠ΅Ρ Π΄ΠΎΠΌΠΈΠ½ΠΎ-ΠΏΡΠΎΡΠ΅ΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π·Π°Π²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² ΡΠ΅Π°ΠΊΡΠΈΠΈ β ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΠΈΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΠΈΡΠΎΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½ΠΎΠ½ΠΎΠ².ΠΠ΅ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ β Π²ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΡΡΡΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΡΠ·Π°ΡΠΈΠ½ΡΠ² Π· 5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»Π°ΠΌΠΈ ΡΠ° 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½ΠΎΠΌ Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠΌΠΎΠ²Π°Ρ
.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠΎΠΌΡΠ½ΠΎ-ΡΠ΅Π°ΠΊΡΡΡ ΡΠ·Π°ΡΠΈΠ½ΡΠ², 5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»ΡΠ² ΡΠ° 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½Ρ (ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ°) Ρ ΡΠΏΠΈΡΡΠΎΠ²ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ Π·Π°Π²Π΅ΡΡΡΡΡΡΡΡ ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ ΡΡΠΌΡΡΡ ΠΏΡΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΡΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΡΡΠΎΡΠ½Π΄ΠΎΠ»ΡΠ½ΠΎΠ½ΡΠ² ΡΠ° 3-(5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»-3-ΡΠ»)-3-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΡΠ½Π΄ΠΎΠ»ΡΠ½ΡΠ² Π· ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΈΠΌ Π²ΠΌΡΡΡΠΎΠΌ ΡΠΏΡΡΠΎ-ΡΠΏΠΎΠ»ΡΠΊ. 3-(5-ΠΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»-4-ΡΠ»)-3-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΡΠ½Π΄ΠΎΠ»ΡΠ½ΠΈ Π»ΠΈΡΠ΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅ΡΡΠΎΡΠΎΠ·ΠΏΠ°Π΄Ρ Π½Π° Π²ΠΈΡ
ΡΠ΄Π½Ρ ΡΠ·Π°ΡΠΈΠ½ ΡΠ° Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ» Ρ ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° ΠΌΠΎΠΆΡΡΡ Π΄ΡΠΆΠ΅ ΠΏΠΎΠ²ΡΠ»ΡΠ½ΠΎ Π· Π½ΠΈΠ·ΡΠΊΠΈΠΌΠΈ Π²ΠΈΡ
ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠ΅ΡΠ΅ΡΠ²ΠΎΡΡΠ²Π°ΡΠΈΡΡ Π½Π° ΠΏΡΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΡΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΡΡΠΎΡΠ½Π΄ΠΎΠ»ΡΠ½ΠΎΠ½ΠΈ.ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π° ΡΠ°ΡΡΠΈΠ½Π°. ΠΠΈΠΏβΡΡΡΠ½Π½ΡΠΌ Ρ ΠΌΠ΅ΡΠ°Π½ΠΎΠ»Ρ Π΅ΠΊΠ²ΡΠΌΠΎΠ»ΡΠ½ΠΈΡ
ΠΊΡΠ»ΡΠΊΠΎΡΡΠ΅ΠΉ ΡΠ·Π°ΡΠΈΠ½ΡΠ², 5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»ΡΠ² ΡΠ° ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΎ ΡΡΠΌΡΡΡ ΠΏΡΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΡΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΡΡΠΎΡΠ½Π΄ΠΎΠ»ΡΠ½ΠΎΠ½ΡΠ² ΡΠ° 3-(5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»-3-ΡΠ»)-3-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΡΠ½Π΄ΠΎΠ»ΡΠ½ΡΠ², ΡΠΊΡ ΡΠΎΠ·Π΄ΡΠ»Π΅Π½Ρ ΠΊΡΠΈΡΡΠ°Π»ΡΠ·Π°ΡΡΡΡ. ΠΠΈΡ
ΡΠ΄ ΡΠΏΡΡΠΎ-ΡΠΏΠΎΠ»ΡΠΊ ΡΠΊΠ»Π°Π΄Π°Ρ 26-82 %, Π° 3-(5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»-3-ΡΠ»)-3-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΡΠ½Π΄ΠΎΠ»ΡΠ½ΡΠ² β 5-23 %. ΠΠ΅ΡΠ΅ΡΠ²ΠΎΡΠ΅Π½Π½Ρ ΠΎΡΡΠ°Π½Π½ΡΡ
Ρ ΠΏΡΠΈΡΡΡΠ½ΠΎΡΡΡ ΠΊΠΈΡΠ»ΠΎΡΠΈ ΠΠ΅Π»ΡΠ΄ΡΡΠΌΠ° Π½Π° ΡΠΏΡΡΠΎ-ΡΠΏΠΎΠ»ΡΠΊΠΈ Π²ΡΠ΄Π±ΡΠ²Π°ΡΡΡΡΡ ΠΏΡΠΈ ΡΡΠΈΠ²Π°Π»ΠΎΠΌΡ ΠΊΠΈΠΏβΡΡΡΠ½Π½Ρ Ρ ΡΠΏΠΈΡΡΠΎΠ²ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ Ρ ΡΡΠΏΡΠΎΠ²ΠΎΠ΄ΠΆΡΡΡΡΡΡ Π²ΠΊΡΠ°ΠΉ Π½ΠΈΠ·ΡΠΊΠΈΠΌΠΈ Π²ΠΈΡ
ΠΎΠ΄Π°ΠΌΠΈ. Π‘ΡΡΡΠΊΡΡΡΡ Ρ ΡΠΊΠ»Π°Π΄ ΡΡΡΡ
ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ Π΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π΄Π°Π½ΠΈΠΌΠΈ Π―ΠΠ 1Π, ΠΌΠ°Ρ-ΡΠΏΠ΅ΠΊΡΡΡΠ² Ρ Π΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΈΠΌ Π°Π½Π°Π»ΡΠ·ΠΎΠΌ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Ρ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΈΡ
ΡΠ΅Π°ΠΊΡΡΡΡ
ΡΠ·Π°ΡΠΈΠ½ΡΠ², 5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»ΡΠ² Ρ 2,2-Π΄ΠΈΠΌΠ΅ΡΠΈΠ»-1,3-Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½Ρ ΡΠ΅Π°Π»ΡΠ·ΡΡΡΡΡΡ Π΄Π²Π° ΠΊΠΎΠ½ΠΊΡΡΡΡΡΠΈΡ
Π½Π°ΠΏΡΡΠΌΠΊΠΈ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ ΡΠ·Π°ΡΠΈΠ½Ρ Π· Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»Π°ΠΌΠΈ. ΠΠ΄ΠΈΠ½ Π· Π½ΠΈΡ
β Π½ΡΠΊΠ»Π΅ΠΎΡΡΠ»ΡΠ½Π΅ ΠΏΡΠΈΡΠ΄Π½Π°Π½Π½Ρ Π‘4 ΡΠ΅Π°ΠΊΡΡΠΉΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ° Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»Ρ Π΄ΠΎ ΠΊΠ°ΡΠ±ΠΎΠ½ΡΠ»ΡΠ½ΠΎΡ Π³ΡΡΠΏΠΈ ΡΠ·Π°ΡΠΈΠ½Ρ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ 3-(5-Π°ΠΌΡΠ½ΠΎΠΏΡΡΠ°Π·ΠΎΠ»-4-ΡΠ»)-3-Π³ΡΠ΄ΡΠΎΠΊΡΠΈ-2-ΠΎΠΊΡΡΠ½Π΄ΠΎΠ»ΡΠ½ΡΠ². Π ΡΠ½ΡΠΈΠΉ β ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΡΡ ΡΠ·Π°ΡΠΈΠ½Ρ Π· Π΄ΡΠΎΠΊΡΠ°Π½-4,6-Π΄ΡΠΎΠ½ΠΎΠΌ Π·Π° ΠΠ½ΡΠΎΠ²Π΅Π½Π°Π³Π΅Π»Π΅ΠΌ Π·Π°ΠΏΠΎΡΠ°ΡΠΊΠΎΠ²ΡΡ Π΄ΠΎΠΌΡΠ½ΠΎ-ΠΏΡΠΎΡΠ΅Ρ, ΡΠΊΠΈΠΉ Π·Π°Π²Π΅ΡΡΡΡΡΡΡΡ ΡΡΠ²ΠΎΡΠ΅Π½Π½ΡΠΌ ΠΏΠ΅ΡΠ΅Π²Π°ΠΆΠ½ΠΈΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΡΠ² ΡΠ΅Π°ΠΊΡΡΡ β ΠΏΡΡΠ°Π·ΠΎΠ»ΠΎ[3,4-b]ΠΏΡΡΠΈΠ΄ΠΈΠ½-4-ΡΠΏΡΡΠΎΡΠ½Π΄ΠΎΠ»ΡΠ½ΠΎΠ½ΡΠ²
- β¦