222 research outputs found

    Rotational knee laxity: Reliability of a simple measurement device in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Double bundle ACL reconstruction has been demonstrated to decrease rotational knee laxity. However, there is no simple, commercially-available device to measure knee rotation. The investigators developed a simple, non-invasive device to measure knee rotation. In conjunction with a rigid boot to rotate the tibia and a force/moment sensor to allow precise determination of torque about the knee, a magnetic tracking system measures the axial rotation of the tibia with respect to the femur. This device has been shown to have acceptable levels of test re-test reliability to measure knee rotation in cadaveric knees.</p> <p>Methods</p> <p>The objective of this study was to determine reliability of the device in measuring knee rotation of human subjects. Specifically, the intra-tester reliability within a single testing session, test-retest reliability between two testing sessions, and inter-tester reliability were assessed for 11 male subjects with normal knees.</p> <p>Results</p> <p>The 95% confidence interval for rotation was less than 5° for intra-tester, test-retest, and inter-tester reliability, and the standard error of measurement for the differences between left and right knees was found to be less than 3°.</p> <p>Conclusion</p> <p>It was found that the knee rotation measurements obtained with this device have acceptable limits of reliability for clinical use and interpretation.</p

    Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion

    Get PDF
    Persistent rotatory knee laxity is increasingly recognized as a common finding after anterior cruciate ligament (ACL) reconstruction. While the reasons behind rotator knee laxity are multifactorial, the impact of the anterolateral knee structures is significant. As such, substantial focus has been directed toward better understanding these structures, including their anatomy, biomechanics, in vivo function, injury patterns, and the ideal procedures with which to address any rotatory knee laxity that results from damage to these structures. However, the complexity of lateral knee anatomy, varying dissection techniques, differing specimen preparation methods, inconsistent sectioning techniques in biomechanical studies, and confusing terminology have led to discrepancies in published studies on the topic. Furthermore, anatomical and functional descriptions have varied widely. As such, we have assembled a panel of expert surgeons and scientists to discuss the roles of the anterolateral structures in rotatory knee laxity, the healing potential of these structures, the most appropriate procedures to address rotatory knee laxity, and the indications for these procedures. In this round table discussion, KSSTA Editor-in-Chief Professor Jón Karlsson poses a variety of relevant and timely questions, and experts from around the world provide answers based on their personal experiences, scientific study, and interpretations of the literature. Level of evidence V

    Anatomic and histological study of the anterolateral aspect of the knee: a SANTI Group investigation

    Get PDF
    Background: The structure and function of the anterolateral aspect of the knee have been significantly debated, with renewed interest in this topic since the description of the anterolateral ligament (ALL). Purpose: To define and describe the distinct structures of the lateral knee and to correlate the macroscopic and histologic anatomic features. Study Design: Descriptive laboratory study. Methods: Twelve fresh-frozen human cadavers were used for anatomic analysis. In the left knee, a layer-by-layer dissection and macroscopic analysis were performed. In the right knee, an en bloc specimen was obtained encompassing an area from the Gerdy tubercle to the posterior fibular head and extending proximally from the anterior aspect to the posterior aspect of the lateral femoral epicondyle. The en bloc resection was then frozen, sliced at the level of the joint line, and reviewed by a musculoskeletal pathologist. Results: Macroscopically, the lateral knee has 4 main layers overlying the capsule of the knee: the aponeurotic layer, the superficial layer including the iliotibial band (ITB), the deep fascial layer, and the ALL. Histologically, 8 of 12 specimens demonstrated 4 consistent, distinct structures: the ITB, the ALL, the lateral collateral ligament, and the meniscus. Conclusion: The lateral knee has a complex orientation of layers and fibers. The ALL is a distinct structure from the ITB and is synonymous to the previously described capsulo-osseous layer of the ITB. Clinical Relevance: Increasingly, lateral extra-articular procedures are performed at the time of anterior cruciate ligament reconstruction. Understanding the anatomic features of the anterolateral aspect of the knee is necessary to understand the biomechanics and function of the structures present and allows surgeons to attempt to replicate those anatomic characteristics when performing extra-articular reconstruction

    Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device

    Get PDF
    Purpose Objective evaluation of both antero-posterior translation and rotatory laxity of the knee remains a target to be accomplished. This is true for both preoperative planning and postoperative assessment of different ACL reconstruction emerging techniques. The ideal measurement tool should be simple, accurate and reproducible, while enabling to assess both ‘‘anatomy’’ and ‘‘function’’ during the same examination. The purpose of this study is to evaluate the clinical effectiveness of a new in-housedeveloped testing device, the so-called Porto-knee testing device (PKTD). The PKTD is aimed to be used on the evaluation of both antero-posterior and rotatory laxity of the knee during MRI exams. Methods Between 2008 and 2010, 33 patients with ACLdeficient knees were enrolled for the purpose of this study. All patients were evaluated in the office and under anesthesia with Lachman test, lateral pivot-shift test and anterior drawer test. All cases were studied preoperatively with KT-1000 and MRI with PKTD, and examinations performed by independent observers blinded for clinical evaluation. During MRI, we have used a PKTD that applies antero-posterior translation and permits free tibial rotation through a standardized pressure (46.7 kPa) in the proximal posterior region of the leg. Measurements were taken for both knees and comparing side-to-side. Five patients with partial ruptures were excluded from the group of 33. Results For the 28 remaining patients, 3 women and 25 men, with mean age of 33.4 ± 9.4 years, 13 left and 15 right knees were tested. No significant correlation was noticed for Lachman test and PKTD results (n.s.). Pivot-shift had a strong positive correlation with the difference in anterior translation registered in lateral and medial tibia plateaus of injured knees (cor. coefficient = 0.80; p\0.05), and with the difference in this parameter as compared to side-to-side (cor. coefficient = 0.83; p\0.05). Considering the KT-1000 difference between injured and healthy knees, a very strong positive correlation was found for side-to-side difference in medial (cor. coeffi- cient = 0.73; p\0.05) and lateral (cor. coefficient = 0.5; p\0.05) tibial plateau displacement using PKTD. Conclusion The PKTD proved to be a reliable tool in assessment of antero-posterior translation (comparing with KT-1000) and rotatory laxity (compared with lateral pivotshift under anesthesia) of the ACL-deficient knee during MRI examinatio

    Treatment After Anterior Cruciate Ligament Injury: Panther Symposium ACL Treatment Consensus Group

    Get PDF
    © The Author(s) 2020. Treatment strategies for anterior cruciate ligament (ACL) injuries continue to evolve. Evidence supporting best-practice guidelines for the management of ACL injury is to a large extent based on studies with low-level evidence. An international consensus group of experts was convened to collaboratively advance toward consensus opinions regarding the best available evidence on operative versus nonoperative treatment for ACL injury. The purpose of this study was to report the consensus statements on operative versus nonoperative treatment of ACL injuries developed at the ACL Consensus Meeting Panther Symposium 2019. There were 66 international experts on the management of ACL injuries, representing 18 countries, who were convened and participated in a process based on the Delphi method of achieving consensus. Proposed consensus statements were drafted by the scientific organizing committee and session chairs for the 3 working groups. Panel participants reviewed preliminary statements before the meeting and provided initial agreement and comments on the statement via online survey. During the meeting, discussion and debate occurred for each statement, after which a final vote was then held. Ultimately, 80% agreement was defined a priori as consensus. A total of 11 of 13 statements on operative versus nonoperative treatment of ACL injury reached consensus during the symposium. Overall, 9 statements achieved unanimous support, 2 reached strong consensus, 1 did not achieve consensus, and 1 was removed because of redundancy in the information provided. In highly active patients engaged in jumping, cutting, and pivoting sports, early anatomic ACL reconstruction is recommended because of the high risk of secondary meniscal and cartilage injuries with delayed surgery, although a period of progressive rehabilitation to resolve impairments and improve neuromuscular function is recommended. For patients who seek to return to straight-plane activities, nonoperative treatment with structured, progressive rehabilitation is an acceptable treatment option. However, with persistent functional instability, or when episodes of giving way occur, anatomic ACL reconstruction is indicated. The consensus statements derived from international leaders in the field will assist clinicians in deciding between operative and nonoperative treatment with patients after an ACL injury

    Diagnosis of bladder cancer by immunocytochemical detection of minichromosome maintenance protein-2 in cells retrieved from urine.

    Get PDF
    BACKGROUND: We tested the accuracy of immunocytochemistry (ICC) for minichromosome maintenance protein-2 (MCM-2) in diagnosing bladder cancer, using cells retrieved from urine. METHODS: Adequate samples were obtained from 497 patients, the majority presenting with gross haematuria (GH) or undergoing cystoscopic surveillance (CS) following previous bladder cancer. We performed an initial study of 313 patients, followed by a validation study of 184 patients. In all cases, presence/absence of bladder cancer was established by cystoscopy/biopsy. RESULTS: In the initial study, receiver operator characteristic analysis showed an area under the curve of 0.820 (P<0.0005) for the GH group and 0.821 (P<0.01) for the CS group. Optimal sensitivity/specificity were provided by threshold values of 50+ MCM-2-positive cells in GH samples and 200+ cells in CS samples, based on a minimum total cell number of 5000. Applying these thresholds to the validation data set gave 81.3% sensitivity, 76.0% specificity and 92.7% negative predictive value (NPV) in GH and 63.2% sensitivity, 89.9% specificity and 89.9% NPV in CS. Minichromosome maintenance protein-2 ICC provided clinically relevant improvements over urine cytology, with greater sensitivity in GH and greater specificity in CS (P=0.05). CONCLUSIONS: Minichromosome maintenance protein-2 ICC is a reproducible and accurate test that is suitable for both GH and CS patient groups
    corecore