7 research outputs found

    Exercise induced neuroprotection in spontaneuosly running rats

    Get PDF
    Includes bibliographical references (p. 182-205).We investigated the effects of voluntary exercise on neuroprotection after unilateral lesions with 6-hydroxydopamine. Rats were divided into runners (had access to running wheel) and non-runners (their running wheels were immobilised). Two weeks after injection of the neurotoxin, the rats were injected with apomorphine and the number of ipsilateral and contralateral rotations was counted with contralateral rotations of greater than 150 considered to represent striatal dopamine neuron destruction of 70% or above

    ASIATIC ACID INFLUENCES GLUCOSE HOMEOSTASIS IN P. BERGHEI MURINE MALARIA INFECTED SPRAGUE-DAWLEY RATS

    Get PDF
    Background: Glucose homeostasis derangement is a common pathophysiology of malaria whose aetiology is still controversial. The Plasmodium parasite, immunological and inflammatory responses, as well as chemotherapeutics currently used cause hypoglycaemia in malaria. Anti-parasitic and anti-disease drugs are required to combat malaria while ameliorating the pathophysiology of the infection. Asiatic acid has anti-hyperglycaemic, antioxidant, pro-oxidant properties useful in glucose homeostasis but its influence in malaria is yet to be reported. Here we present findings on the influence of asiatic acid on glucose metabolism in vivo using P. berghei-infected Sprague Dawley rats. Materials and Methods: Acute as well as sub-chronic studies were carried out in vivo where physicochemical properties and glucose homeostasis were monitored after administration of asiatic acid (10mg/kg) in both non-infected and infected animals. Glucose metabolism associated biochemical changes in malaria were also investigated. Results: In acute studies, asiatic acid improved oral glucose response while in the sub-chronic state it maintained food and water intake and suppressed parasitaemia. Normoglycaemic control was maintained in infected animals through insulin suppression and increasing glucagon secretion, in both acute and chronic studies. Asiatic acid administration curtailed lactate concentration towards normal. Conclusion: Per oral post-infection asiatic acid administration preserved drinking and eating habits, inhibited sickness behaviour while suppressing parasitaemia. Reciprocal relationship between insulin and glucagon concentrations was maintained influencing glucose homeostasis positively and inhibition of hyperlactaemia in malaria

    Asiatic acid influences glucose homeostasis in P. berghei murine malaria infected sprague-dawley rats

    Get PDF
    Background: Glucose homeostasis derangement is a common pathophysiology of malaria whose aetiology is still controversial. The Plasmodium parasite, immunological and inflammatory responses, as well as chemotherapeutics currently used cause hypoglycaemia in malaria. Anti-parasitic and anti-disease drugs are required to combat malaria while ameliorating the pathophysiology of the infection. Asiatic acid has anti-hyperglycaemic, antioxidant, pro-oxidant properties useful in glucose homeostasis but its influence in malaria is yet to be reported. Here we present findings on the influence of asiatic acid on glucose metabolism in vivo using P. berghei-infected Sprague Dawley rats.Materials and Methods: Acute as well as sub-chronic studies were carried out in vivo where physicochemical properties and glucose homeostasis were monitored after administration of asiatic acid (10mg/kg) in both non-infected and infected animals. Glucose metabolism associated biochemical changes in malaria were also investigated.Results: In acute studies, asiatic acid improved oral glucose response while in the sub-chronic state it maintained food and water intake and suppressed parasitaemia. Normoglycaemic control was maintained in infected animals through insulin suppression and increasing glucagon secretion, in both acute and chronic studies. Asiatic acid administration curtailed lactate concentration towards normal.Conclusion: Per oral post-infection asiatic acid administration preserved drinking and eating habits, inhibited sickness behaviour while suppressing parasitaemia. Reciprocal relationship between insulin and glucagon concentrations was maintained influencing glucose homeostasis positively and inhibition of hyperlactaemia in malaria.Keywords: Asiatic acid, malaria, Plasmodium berghei, glucose homeostasis, anti disease, anti-parasiti

    Effects of combination antiretroviral drugs (cART) on hippocampal neuroplasticity in female mice

    No full text
    The incidence of HIV-associated neurocognitive disorder (HAND) continues despite the introduction of combination antiretroviral drugs (cART). Several studies have reported the neurotoxicity of individual antiretroviral drugs (monotherapy), while the common approach for HIV treatment is through cART. Hence, the current study investigated the effects of long-term exposure to cART on cognitive function, oxidative damage, autophagy, and neuroplasticity in the hippocampus of mice. Female Balb/c mice received a once-a-day oral dose of cART composed of emtricitabine+tenofovir disoproxil fumarate or vehicle for 8weeks. On week 7 of drug administration, all mice were assessed for spatial learning in the Morris water maze (MWM), and then on week 8, mice were sacrificed, and hippocampal tissue dissected from the brain. For biochemical analyses, we measured the concentration of 4-hydroxynonenal, and the expression of autophagic marker LC3B, synaptophysin, and brain-derived neurotrophic factor (BDNF) in the hippocampus. Our results showed that cART exposure increased escape latency in the MWM test. The cART-treated mice also showed increased 4-hydroxynonenal concentration and expression of LC3B. Furthermore, cART treatment decreased the expression of synaptophysin and BDNF. These findings further support the evidence that cART may be neurotoxic and therefore may play a role in the neuropathogenesis of HAND
    corecore