30 research outputs found
Evaluation of least significant changes of pulse contour analysis-derived parameters
BACKGROUND: Many maneuvers assessing fluid responsiveness (minifluid challenge, lung recruitment maneuver, end-expiratory occlusion test, passive leg raising) are considered as positive when small variations in cardiac index, stroke volume index, stroke volume variation or pulse pressure variation occur. Pulse contour analysis allows continuous and real-time cardiac index, stroke volume, stroke volume variation and pulse pressure variation estimations. To use these maneuvers with pulse contour analysis, the knowledge of the minimal change that needs to be measured by a device to recognize a real change (least significant change) has to be studied. The aim of this study was to evaluate the least significant change of cardiac index, stroke volume index, stroke volume variation and pulse pressure variation obtained using pulse contour analysis (ProAQT®, Pulsion Medical System, Germany). METHODS: In this observational study, we included 50 mechanically ventilated patients undergoing neurosurgery in the operating room. Cardiac index, stroke volume index, pulse pressure variation and stroke volume variation obtained using ProAQT® (Pulsion Medical System, Germany) were recorded every 12 s during 15-min steady-state periods. Least significant changes were calculated every minute. RESULTS: Least significant changes statistically differed over time for cardiac index, stroke volume index, pulse pressure variation and stroke volume variation (p \textless 0.001). Least significant changes ranged from 1.3 to 0.7% for cardiac index, from 1.3 to 0.8% for stroke volume index, from 10 to 4.9% for pulse pressure variation and from 10.8 to 4.3% for stroke volume variation. CONCLUSION: To conclude, the present study suggests that pulse contour analysis is able to detect rapid and small changes in cardiac index and stroke volume index, but the interpretation of rapid and small changes of pulse pressure variation and stroke volume variation must be done with caution
Changes in dynamic arterial elastance induced by volume expansion and vasopressor in the operating room: a prospective bicentre study
BACKGROUND: Dynamic arterial elastance (Eadyn), defined as the ratio between pulse pressure variations and stroke volume variations, has been proposed to assess functional arterial load. We evaluated the evolution of Eadyn during volume expansion and the effects of neosynephrine infusion in hypotensive and preload-responsive patients. METHODS: In this prospective bicentre study, we included 56 mechanically ventilated patients in the operating room. Each patient had volume expansion and neosynephrine infusion. Stroke volume and stroke volume variations were obtained using esophageal Doppler, and pulse pressure variations were measured through the arterial line. Pressure response to volume expansion was defined as an increase in mean arterial pressure (MAP) ≥ 10%. RESULTS: Twenty-one patients were pressure responders to volume expansion. Volume expansion induced a decrease in Eadyn (from 0.69 [0.58-0.85] to 0.59 [0.42-0.77]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after volume expansion were related to age, history of arterial hypertension, net arterial compliance and effective arterial elastance. Eadyn value before volume expansion \textgreater 0.65 predicted a MAP increase ≥ 10% with a sensitivity of 76% (95% CI 53-92%) and a specificity of 60% (95% CI 42-76%). Neosynephrine infusion induced a decrease in Eadyn (from 0.67 [0.48-0.80] to 0.54 [0.37-0.68]) related to a decrease in pulse pressure variations more pronounced than the decrease in stroke volume variations. Baseline and changes in Eadyn after neosynephrine infusion were only related to heart rate. CONCLUSION: Eadyn is a potential sensitive marker of arterial tone changes following vasopressor infusion
Circulation of respiratory viruses during the COVID-19 pandemic in The Gambia
Background: In many countries, non-pharmaceutical interventions to limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission resulted in significant reductions in other respiratory viruses. However, similar data from Africa are limited. We explored the extent to which viruses such as influenza and rhinovirus co-circulated with SARS-CoV-2 in The Gambia during the COVID-19 pandemic. Methods: Between April 2020 and March 2022, respiratory viruses were detected using RT-PCR in nasopharyngeal swabs from 1397 participants with influenza-like illness. An assay to detect SARS-CoV-2 and a viral multiplex RT-PCR assay was used as previously described  to detect influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza viruses 1-4, human metapneumovirus (HMPV), adenovirus, seasonal coronaviruses (229E, OC43, NL63) and human rhinovirus. Results: Overall virus positivity was 44.2%, with prevalence higher in children 50 years (39.9%), p50 years (24.3%), p50 years (6.3%), p<0.0001. Four SARS-CoV-2 waves occurred, with 36.1%-52.4% SARS-CoV-2 positivity during peak months. Influenza infections were observed in both 2020 and 2021 during the rainy season as expected (peak positivity 16.4%-23.5%). Peaks of rhinovirus were asynchronous to the months when SARS-CoV-2 and influenza peaked. Conclusion: Our data show that many respiratory viruses continued to circulate during the COVID-19 pandemic in The Gambia, including human rhinoviruses, despite the presence of NPIs during the early stages of the pandemic, and influenza peaks during expected months
End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit : an echocardiographic study
Background In mechanically ventilated patients, an increase in cardiac index during an end-expiratory-occlusion test predicts fluid responsiveness. To identify this rapid increase in cardiac index, continuous and instantaneous cardiac index monitoring is necessary, decreasing its feasibility at the bedside. Our study was designed to investigate whether changes in velocity time integral and in peak velocity obtained using transthoracic echocardiography during an end-expiratory-occlusion maneuver could predict fluid responsiveness. Methods This single-center, prospective study included 50 mechanically ventilated critically ill patients. Velocity time integral and peak velocity were assessed using transthoracic echocardiography before and at the end of a 12-sec end-expiratory-occlusion maneuver. A third set of measurements was performed after volume expansion (500 mL of saline 0.9% given over 15 minutes). Patients were considered as responders if cardiac output increased by 15% or more after volume expansion. Results Twenty-eight patients were responders. At baseline, heart rate, mean arterial pressure, cardiac output, velocity time integral and peak velocity were similar between responders and non-responders. End-expiratory-occlusion maneuver induced a significant increase in velocity time integral both in responders and non-responders, and a significant increase in peak velocity only in responders. A 9% increase in velocity time integral induced by the end-expiratory-occlusion maneuver predicted fluid responsiveness with sensitivity of 89% (95% CI 72% to 98%) and specificity of 95% (95% CI 77% to 100%). An 8.5% increase in peak velocity induced by the end-expiratory-occlusion maneuver predicted fluid responsiveness with sensitivity of 64% (95% CI 44% to 81%) and specificity of 77% (95% CI 55% to 92%). The area under the receiver operating curve generated for changes in velocity time integral was significantly higher than the one generated for changes in peak velocity (0.96 ± 0.03 versus 0.70 ± 0.07, respectively, P = 0.0004 for both). The gray zone ranged between 6 and 10% (20% of the patients) for changes in velocity time integral and between 1 and 13% (62% of the patients) for changes in peak velocity. Conclusions In mechanically ventilated and sedated patients in the neuro Intensive Care Unit, changes in velocity time integral during a 12-sec end-expiratory-occlusion maneuver were able to predict fluid responsiveness and perform better than changes in peak velocity
Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in the Gambia.
BACKGROUND: In areas of declining malaria transmission such as in The Gambia, the identification of malaria infected individuals becomes increasingly harder. School surveys may be used to identify foci of malaria transmission in the community. METHODS: The survey was carried out in May-June 2011, before the beginning of the malaria transmission season. Thirty two schools in the Upper River Region of The Gambia were selected with probability proportional to size; in each school approximately 100 children were randomly chosen for inclusion in the study. Each child had a finger prick blood sample collected for the determination of antimalarial antibodies by ELISA, malaria infection by microscopy and PCR, and for haemoglobin measurement. In addition, a simple questionnaire on socio-demographic variables and the use of insecticide-treated bed nets was completed. The cut-off for positivity for antimalarial antibodies was obtained using finite mixture models. The clustered nature of the data was taken into account in the analyses. RESULTS: A total of 3,277 children were included in the survey. The mean age was 10 years (SD = 2.7) [range 4-21], with males and females evenly distributed. The prevalence of malaria infection as determined by PCR was 13.6% (426/3124) [95% CI = 12.2-16.3] with marked variation between schools (range 3-25%, p<0.001), while the seroprevalence was 7.8% (234/2994) [95%CI = 6.4-9.8] for MSP119, 11.6% (364/2997) [95%CI = 9.4-14.5] for MSP2, and 20.0% (593/2973) [95% CI = 16.5-23.2) for AMA1. The prevalence of all the three antimalarial antibodies positive was 2.7% (79/2920). CONCLUSIONS: This survey shows that malaria prevalence and seroprevalence before the transmission season were highly heterogeneous
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern—particularly Alpha, Beta, Delta, and Omicron—on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance
Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century