122 research outputs found

    Realms of Social Accountability in Medical Education: the Indian Conundrum

    Get PDF

    Assessment of In Vitro Antidiabetic Potential of Purified Anthocyanin Extract from Floral Petals of Wild Balsam Species

    Get PDF
    Diabetes is a notorious and growing clinical and public health issue. The International Diabetes Federation assumes that 592 million had diabetes by 2035 and that by 2040 the number will increase to 642 million. Cardiovascular corollary accounts for four million deaths annually attributable to diabetes. Evidence reveals that certain glucose-lowering phytochemicals can improve vascular outcomes with type 2 diabetes, which, together with better understanding of using multiple therapies concurrently, offers opportunities for beneficial personalization of medication regimens. Anthocyanins are coloured pigments and are natural antioxidants. Keeping this in focus, this study was undertaken to evaluate the in vitro antidiabetic activity in the petals of wild Impatiens balsamina L. The anthocyanin was extracted from floral petals of wild balsam species and purified to homogeneity using chromatographic techniques. Evaluation of in vitro antidiabetic properties of anthocyanin extract revealed a dose-dependent increase in the inhibitory effect on the alpha-glucosidase (200 μg/ml) and alpha-amylase enzymes (500 μg/ml) and was comparable with the standard acarbose drug (189 μg/ml and 50 μg/ml). These results indicated that anthocyanin could be used as a source of functional food and nutraceuticals. This information from wild species will be useful in finding more potent antidiabetic principle from the natural resources for the clinical development of antidiabetic therapeutics. Future studies are planned to substantiate the antidiabetic power of anthocyanin using in vivo animal models. Keywords: Alpha amylase, alpha glucosidase, diabetes, herbal remedies, Impatiens balsamina L

    Good doctor and bad doctor: A qualitative study of first year medical students’ views on professionalism

    Get PDF
    Introduction: Professionalism is emphasized in medical school curricula; however, there is lack of consensus on what constitutes professionalism. This study aimed at exploring incoming medical students’ views on professionalism through student constructs of the ‘good’ and the ‘bad’ doctor. Methods: After Institutional Ethics Committee approval and informed consent, all (n=150) incoming first-year medical students were asked their reasons for pursuing medicine and their perceptions of the attributes of a ‘good’ and a ‘bad’ doctor. Following the anonymous survey, we used nominal group discussions to achieve consensus about the desirable and undesirable attributes that emerged from student responses. After an iterative theming process, a list of themes were derived from the written reflections of students. Results: Competence, communication, and professionalism were some of the perceived attributes of a good doctor, while being money-minded, having inadequate knowledge or competence, and rudeness were some of the reported attributes of a bad doctor. We identified six themes for the question 'Why pursue medicine?': affective / humanitarian response; thoughts about further pursuits; fulfillment; traits of the profession; ability to contribute to society; and personal experiences. Conclusion: Our results suggest that first year medical students have a fair idea of the behavior expected from a good doctor. Formal reflection on these expectations may hone the concept of professionalism for new entrants into the profession. The teaching of professionalism could incorporate such activities to allow students and educators to articulate and explore tensions between what is taught and what is experienced as they progress through the profession

    Neem by-products in the fight against mosquito-borne diseases: Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera: Culicidae)

    Get PDF
    Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies (An. culicifacies). Methods: Neem cake fractions' total methanol extract (NTMeOH), total ethyl acetate extract (NTAcOEt), ethyl acetate fraction after repartition with NTMeOH (NRAcOEt), butanol fraction after repartition with NTMeOH (NRBuOH), and aqueous fraction after repartition of NTMeOH (NRH2O) were tested against An. culicifacies eggs, fourth instar larvae and adults. Results: In larvicidal experiments, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 1.32, 1.50, 1.81, 1.95 and 2.54 mg/L, respectively. All fractions tested at 150 mg/L were able to reduce egg hatchability of more than 50%, with the exception of NTAcOEt and NRAcOEt. In adulticidal assays, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 3.01, 2.95, 3.23, 3.63 and 3.00 mg/L, respectively. Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies

    mosquitocidal and water purification properties of ocimum sanctum and phyllanthus emblica

    Get PDF
    Ocimum sanctum was tested for its larvicidal and water sedimentation properties; the fruit ethanol and methanol extracts of Phyllanthus emblica were tested for phytochemical, larvicidal, oviposition-deterrent and ovicidal activities. Results emphasized that plant extracts have high toxicity against the egg and larvae of the malarial vector Anopheles stephensi and also have water sedimentation properties. LC50 of Phyllanthus emblica against Anopheles stephensi larvae ranged from 33.08 ppm to 81.26 ppm and from 23.44 to 54.19 ppm for ethanol and methanol extracts, respectively. Phyllanthus emblica also showed excellent ovipositional deterrent and ovicidal activities. The oviposition activity index value of ethanol and methanol extracts of Phyllanthus emblica at 500 ppm were -0.80 and -0.92, respectively. Ocimum sanctum includes both insecticidal secondary compounds, amino acids (glycine, lysine), vitamin C and other substances, that make treated water suitable for human consumption. Water quality parameters such as color, turbidity and pH were analyzed in the water samples (pre-treatment and post-treatment of plant extracts) taken from the breeding sites of mosquitoes. Hence, the plant product can be used as both mosquitocidal and water purifier

    Fern-synthesized nanopeprintss in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanopeprintss with high mosquitocidal and antiplasmodial activity

    Get PDF
    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils evoked mortality rates comparable to the permethrin-based positive control (57, 50, 41, and 49 %, respectively). Furthermore, the antiplasmodial activity of P. aquilinum leaf extract and green-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. IC50 of P. aquilinum were 62.04 μg/ml (CQ-s) and 71.16 μg/ml (CQ-r); P. aquilinum-synthesized AgNP achieved IC50 of 78.12 μg/ml (CQ-s) and 88.34 μg/ml (CQ-r). Overall, our results highlighted that fern-synthesized AgNP could be candidated as a new tool against chloroquine-resistant P. falciparum and different developmental instars of its primary vector An. stephensi. Further research on nanosynthesis routed by the LC/MS-identified constituents is ongoing

    Rapid biosynthesis of silver nanopeprintss using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behaviour after exposure at ultra-low doses

    Get PDF
    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50–100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV–vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs

    Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes

    Get PDF
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW–AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW–AgNP showed plasmon resonance reduction in UV–vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW–AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW–AgNP were toxic to Anopheles stephensi larvae and pupae, LC50 were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW–AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW–AgNP IC50 were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC50 were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW–AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW–AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW–AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW–AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies

    Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata

    Get PDF
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensiand A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparumparasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV–vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301 μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496 μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1 μg/ml (CQ-s) and 71.46 μg/ml (CQ-r), while nano-CdS IC50 was 76.14 μg/ml (CQ-s) and 89.21 μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8 μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16 days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs
    corecore