324 research outputs found

    Middle and Late Pleistocene environmental history of the Marsworth area, south-central England

    Get PDF
    To elucidate the Middle and Late Pleistocene environmental history of south-central England, we report the stratigraphy, sedimentology, palaeoecology and geochronology of some deposits near the foot of the Chiltern Hills scarp at Marsworth, Buckinghamshire. The Marsworth site is important because its sedimentary sequences contain a rich record of warm stages and cold stages, and it lies close to the Anglian glacial limit. Critical to its history are the origin and age of a brown pebbly silty clay (diamicton) previously interpreted as weathered till. The deposits described infill a river channel incised into chalk bedrock. They comprise clayey, silty and gravelly sediments, many containing locally derived chalk and some with molluscan, ostracod and vertebrate remains. Most of the deposits are readily attributed to periglacial and fluvial processes, and some are dated by optically stimulated luminescence to Marine Isotope Stage (MIS) 6. Although our sedimentological data do not discriminate between a glacial or periglacial interpretation of the diamicton, amino-acid dating of three molluscan taxa from beneath it indicates that it is younger than MIS 9 and older than MIS 5e. This makes a glacial interpretation unlikely, and we interpret the diamicton as a periglacial slope deposit. The Pleistocene history reconstructed for Marsworth identifies four key elements: (1) Anglian glaciation during MIS 12 closely approached Marsworth, introducing far-travelled pebbles such as Rhaxella chert and possibly some fine sand minerals into the area. (2) Interglacial environments inferred from fluvial sediments during MIS 7 varied from fully interglacial conditions during sub-stages 7e and 7c, cool temperate conditions during sub-stage 7b or 7a, temperate conditions similar to those today in central England towards the end of the interglacial, and cool temperate conditions during sub-stage 7a. (3) Periglacial activity during MIS 6 involved thermal contraction cracking, permafrost development, fracturing of chalk bedrock, fluvial activity, slopewash, mass movement and deposition of loess and coversand. (4) Fully interglacial conditions during sub-stage 5e led to renewed fluvial activity, soil formation and acidic weathering

    Bacterioplankton reveal years-long retention of Atlantic deep-ocean water by the Tropic Seamount.

    No full text
    Seamounts, often rising hundreds of metres above surrounding seafloor, obstruct the flow of deep-ocean water. While the retention of deep-water by seamounts is predicted from ocean circulation models, its empirical validation has been hampered by large scale and slow rate of the interaction. To overcome these limitations we use the growth of planktonic bacteria to assess the retention time of deep-ocean water by a seamount. The selected Tropic Seamount in the North-Eastern Atlantic is representative for the majority of isolated seamounts, which do not affect the surface ocean waters. We prove deep-water is retained by the seamount by measuring 2.4* higher bacterial concentrations in the seamount-associated or 'sheath'-water than in deep-ocean water unaffected by seamounts. Genomic analyses of flow-sorted, dominant sheath-water bacteria confirm their planktonic origin, whilst proteomic analyses of the sheath-water bacteria, isotopically labelled in situ, indicate their slow growth. According to our radiotracer experiments, it takes the sheath-water bacterioplankton 1.5 years to double their concentration. Therefore, the seamount should retain the deep-ocean water for 1.8 years for the deep-ocean bacterioplankton to grow to the 2.4* higher concentration in the sheath-water. We propose that turbulent mixing of the seamount sheath-water stimulates bacterioplankton growth by increasing cell encounter rate with ambient dissolved organic molecules

    Acoustic Voice and Speech Biomarkers of Treatment Status during Hospitalization for Acute Decompensated Heart Failure

    Get PDF
    This study investigates acoustic voice and speech features as biomarkers for acute decompensated heart failure (ADHF), a serious escalation of heart failure symptoms including breathlessness and fatigue. ADHF-related systemic fluid accumulation in the lungs and laryngeal tissues is hypothesized to affect phonation and respiration for speech. A set of daily spoken recordings from 52 patients undergoing inpatient ADHF treatment was analyzed to identify voice and speech biomarkers for ADHF and to examine the trajectory of biomarkers during treatment. Results indicated that speakers produce more stable phonation, a more creaky voice, faster speech rates, and longer phrases after ADHF treatment compared to their pre-treatment voices. This project builds on work to develop a method of monitoring ADHF using speech biomarkers and presents a more detailed understanding of relevant voice and speech features

    Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training

    Get PDF
    We sought to ascertain the time course of transcriptional events that occur in human skeletal muscle at the outset of resistance exercise (RE) training in RE naive individuals and determine whether the magnitude of response was associated with exercise-induced muscle damage. Sixteen RE naive men were recruited; eight underwent two sessions of 5 × 30 maximum isokinetic knee extensions (180°/s) separated by 48 h. Muscle biopsies of the vastus lateralis, obtained from different sites, were taken at baseline and 24 h after each exercise bout. Eight individuals acted as nonexercise controls with biopsies obtained at the same time intervals. Transcriptional changes were assessed by microarray and protein levels of heat shock protein (HSP) 27 and αB-crystallin in muscle cross sections by immunohistochemistry as a proxy measure of muscle damage. In control subjects, no probe sets were significantly altered (false discovery rate < 0.05), and HSP27 and αB-crystallin protein remained unchanged throughout the study. In exercised subjects, significant intersubject variability following the initial RE bout was observed in the muscle transcriptome, with greatest changes occurring in subjects with elevated HSP27 and αB-crystallin protein. Following the second bout, the transcriptome response was more consistent, revealing a cohort of probe sets associated with immune activation, the suppression of oxidative metabolism, and ubiquitination, as differentially regulated. The results reveal that the initial transcriptional response to RE is variable in RE naive volunteers, potentially associated with muscle damage and unlikely to reflect longer term adaptations to RE training. These results highlight the importance of considering multiple time points when determining the transcriptional response to RE and associated physiological adaptation

    The geomorphology of the Anthropocene:emergence, status and implications

    Get PDF
    This is the peer reviewed version of the following article: BROWN, A.G. ... et al, 2017. The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms, 42(1), pp.71-90., which has been published in final form at http://dx.doi.org/10.1002/esp.3943. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The Anthropocene is proposed as a new interval of geological time in which human influence on Earth and its geological record dominates over natural processes. A major challenge in demarcating the Anthropocene is that the balance between human-influenced and natural processes varies over spatial and temporal scales owing to the inherent variability of both human activities (as associated with culture and modes of development) and natural drivers (e.g. tectonic activity and sea level variation). Against this backdrop, we consider how geomorphology might contribute towards the Anthropocene debate focussing on human impact on aeolian, fluvial, cryospheric and coastal process domains, and how evidence of this impact is preserved in landforms and sedimentary records. We also consider the evidence for an explicitly anthropogenic geomorphology that includes artificial slopes and other human-created landforms. This provides the basis for discussing the theoretical and practical contributions that geomorphology can make to defining an Anthropocene stratigraphy. It is clear that the relevance of the Anthropocene concept varies considerably amongst different branches of geomorphology, depending on the history of human actions in different process domains. For example, evidence of human dominance is more widespread in fluvial and coastal records than in aeolian and cryospheric records, so geomorphologically the Anthropocene would inevitably comprise a highly diachronous lower boundary. Even to identify this lower boundary, research would need to focus on the disambiguation of human effects on geomorphological and sedimentological signatures. This would require robust data, derived from a combination of modelling and new empirical work rather than an arbitrary ‘war of possible boundaries’ associated with convenient, but disputed, `golden spikes’. Rather than being drawn into stratigraphical debates, the primary concern of geomorphology should be with the investigation of processes and landform development, so providing the underpinning science for the study of this time of critical geological transition

    A Novel Microfluidic Dielectrophoresis Technology to Enable Rapid Diagnosis of Mycobacteria tuberculosis in Clinical Samples

    Get PDF
    To achieve the global efforts to end tuberculosis, affordable diagnostics suitable for true point-of-care implementation are required to reach the missing millions. In addition, diagnostics with increased sensitivity and expanded drug susceptibility testing are needed to address drug resistance and to diagnose low-bacterial burden cases. The laboratory-on-a-chip technology described herein used dielectrophoresis to selectively isolate Mycobacterium tuberculosis from sputum samples, purifying the bacterial population ahead of molecular confirmation by multiplex real-time quantitative PCR. After optimization using a panel of 50 characterized sputum samples, the performance of the prototype was assessed against the current gold standards, screening 100 blinded sputum samples using characterized and biobanked sputum provided by Foundation for Innovative New Diagnostics. Concordance with culture diagnosis was 100% for smear-negative samples and 87% for smear-positive samples. Of the smear-positive samples, the high burden sample concordance was 100%. Samples were diagnosed on the basis of visual assessment of the dielectrophoresis array and by multiplex real-time quantitative PCR assay. The results described herein demonstrate the potential of the CAPTURE-XT technology to provide a powerful sample preparation tool that could function as a front-end platform for molecular detection. This versatile tool could equally be applied as a visual detection diagnostic, potentially associated with bacterial identification for low-cost screening or coupled with an expanded PCR assay for genotypic drug susceptibility testing

    Marine mineral exploration with controlled source electromagnetics at the TAG Hydrothermal Field, 26°N Mid‐Atlantic Ridge

    Get PDF
    Seafloor massive sulfide (SMS) deposits are of increasing economic interest in order to satisfy the relentless growth in worldwide metal demand. The Trans‐Atlantic Geotraverse (TAG) hydrothermal field at 26°N on the Mid‐Atlantic Ridge hosts several such deposits. This study presents new controlled source electromagnetic, bathymetric, and magnetic results from the TAG field. Potential SMS targets were selected based on their surface expressions in high‐resolution bathymetric data. High‐resolution reduced‐to‐the‐pole magnetic data show negative anomalies beneath and surrounding the SMS deposits, revealing large areas of hydrothermal alteration. Controlled source electromagnetic data, sensitive to the electrical conductivity of SMS mineralization, further reveal a maximum thickness of up to 80 m and conductivities of up to 5 S/m. SMS samples have conductivities of up to a few thousand Siemens per meter, suggesting that remotely inferred conductivities represent an average of metal sulfide ores combined with silicified and altered host basalt that likely dominates at greater depths

    Upper cenozoic volcanic rocks in the Mariana Forearc recovered from drilling at ocean drilling program site 781: implications for forearc magmatism

    Get PDF
    A horst block was drilled in the center of the Mariana forearc near 20°N during leg 125 of the Ocean Drilling Program. At this site 781, the drill penetrated a Pleistocene vesicular, porphyritic basalt at 72 m below the seafloor, and the top of the basalt corresponds to a high-amplitude reflection on seismic reflection profiles across the site. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt is an island-arc tholeiite (IAT) enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern Mariana Arc seamounts. The basalt layer, the youngest in situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene (about 2.5 Ma) and normally magnetized. The basalt has schlieren - like structures, reverse magnetization, and a K-Ar age of 1.68 ± 0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of rocks from the magmatic axis (or volcanic front) of the island arc, and derived from a mantle source above the subducting Pacific plate

    Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals.

    Get PDF
    This is the final version. Available from the American Physiological Society via the DOI in this record. DATA AVAILABILITY: Data described in the manuscript may be made available upon request, pending application.Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).National Institute of AgingMarlow Foods Ltd

    Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection

    Get PDF
    For groundwater-surface water interactions to be understood in complex wetland settings, the architecture of the underlying deposits requires investigation at a spatial resolution sufficient to characterize significant hydraulic pathways. Discrete intrusive sampling using conventional approaches provides insufficient sample density and can be difficult to deploy on soft ground. Here a noninvasive geophysical imaging approach combining three-dimensional electrical resistivity tomography (ERT) and the novel application of gradient and isosurface-based edge detectors is considered as a means of illuminating wetland deposit architecture. The performance of three edge detectors were compared and evaluated against ground truth data, using a lowland riparian wetland demonstration site. Isosurface-based methods correlated well with intrusive data and were useful for defining the geometries of key geological interfaces (i.e., peat/gravels and gravels/Chalk). The use of gradient detectors approach was unsuccessful, indicating that the assumption that the steepest resistivity gradient coincides with the associated geological interface can be incorrect. These findings are relevant to the application of this approach in settings with a broadly layered geology with strata of contrasting resistivities. In addition, ERT revealed substantial structures in the gravels related to the depositional environment (i.e., braided fluvial system) and a complex distribution of low-permeability putty Chalk at the bedrock surface—with implications for preferential flow and variable exchange between river and groundwater systems. These results demonstrate that a combined approach using ERT and edge detectors can provide valuable information to support targeted monitoring and inform hydrological modeling of wetlands
    corecore