1,391 research outputs found
Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon
In this second paper, we develop transferable semi-empirical parameters for
the technologically important material, silicon, using Extended Huckel Theory
(EHT) to calculate its electronic structure. The EHT-parameters areoptimized to
experimental target values of the band dispersion of bulk-silicon. We obtain a
very good quantitative match to the bandstructure characteristics such as
bandedges and effective masses, which are competitive with the values obtained
within an orthogonal-tight binding model for silicon. The
transferability of the parameters is investigated applying them to different
physical and chemical environments by calculating the bandstructure of two
reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111)
(2x1). The reproduced - and -surface bands agree in part
quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating
their robustness to environmental changes. We further apply the silicon
parameters to describe the 1D band dispersion of a unrelaxed rectangular
silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation
using hydrogen. Our EHT-parameters thus provide a quantitative model of
bulk-silicon and silicon-based materials such as contacts and surfaces, which
are essential ingredients towards a quantitative quantum transport simulation
through silicon-based heterostructures.Comment: 9 pages, 9 figure
State-to-State Differential and Relative Integral Cross Sections for Rotationally Inelastic Scattering of H2O by Hydrogen
State-to-state differential cross sections (DCSs) for rotationally inelastic
scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV
(361 cm-1) collision energy using crossed molecular beams combined with
velocity map imaging. A molecular beam containing variable compositions of the
(J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of
argon seeded with water vapor that is cooled by supersonic expansion to its
lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively).
Angular speed distributions of fully specified rotationally excited final
states are obtained using velocity map imaging. Relative integral cross
sections are obtained by integrating the DCSs taken with the same experimental
conditions. Experimental state-specific DCSs are compared with predictions from
fully quantum scattering calculations on the most complete H2O-H2 potential
energy surface. Comparison of relative total cross sections and state-specific
DCSs show excellent agreement with theory in almost all detailsComment: 46 page
Human cytomegalovirus: taking the strain
In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the UL/b′ region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV
Disease-specific, neurosphere-derived cells as models for brain disorders
There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery
Spatial complementarity and the coexistence of species
Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation
Privatization and State Capacity in Postcommunist Society
Economists have used cross-national regression analysis to argue that postcommunist economic failure is the result of inadequate adherence liberal economic policies. Sociologists have relied on case study data to show that postcommunist economic failure is the outcome of too close adherence to liberal policy recommendations, which has led to an erosion of state effectiveness, and thus produced poor economic performance. The present paper advances a version of this statist theory based on a quantitative analysis of mass privatization programs in the postcommunist world. We argue that rapid large-scale privatization creates severe supply and demand shocks for enterprises, thereby inducing firm failure. The resulting erosion of tax revenues leads to a fiscal crisis for the state, and severely weakens its capacity and bureaucratic character. This, in turn, reacts back on the enterprise sector, as the state can no longer support the institutions necessary for the effective functioning of a modern economy, thus resulting in deindustrialization. Using cross-national regression techniques we find that the implementation of mass privatization programs negatively impacts measures of economic growth, state capacity and the security of property rights.http://deepblue.lib.umich.edu/bitstream/2027.42/40192/3/wp806.pd
Evolution of infectious bronchitis virus in the field after homologous vaccination introduction
International audienceAbstractDespite the fact that vaccine resistance has been typically considered a rare phenomenon, some episodes of vaccine failure have been reported with increasing frequency in intensively-raised livestock. Infectious bronchitis virus (IBV) is a widespread avian coronavirus, whose control relies mainly on extensive vaccine administration. Unfortunately, the continuous emergence of new vaccine-immunity escaping variants prompts the development of new vaccines. In the present work, a molecular epidemiology study was performed to evaluate the potential role of homologous vaccination in driving IBV evolution. This was undertaken by assessing IBV viral RNA sequences from the ORF encoding the S1 portion of viral surface glycoprotein (S) before and after the introduction of a new live vaccine on broiler farms in northern-Italy. The results of several biostatistics analyses consistently demonstrate the presence of a higher pressure in the post-vaccination period. Natural selection was detected essentially on sites located on the protein surface, within or nearby domains involved in viral attachment or related functions. This evidence strongly supports the action of vaccine-induced immunity in conditioning viral evolution, potentially leading to the emergence of new vaccine-escape variants. The great plasticity of rapidly-evolving RNA-viruses in response to human intervention, which extends beyond the poultry industry, is demonstrated, claiming further attention due to their relevance for animal and especially human health
Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor
Only three processes, operant during the formation of the Solar System, are
responsible for the diversity of matter in the Solar System and are directly
responsible for planetary internal-structures, including planetocentric nuclear
fission reactors, and for dynamical processes, including and especially,
geodynamics. These processes are: (i) Low-pressure, low-temperature
condensation from solar matter in the remote reaches of the Solar System or in
the interstellar medium; (ii) High-pressure, high-temperature condensation from
solar matter associated with planetary-formation by raining out from the
interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial
volatile components from the inner portion of the Solar System by super-intense
solar wind associated with T-Tauri phase mass-ejections, presumably during the
thermonuclear ignition of the Sun. As described herein, these processes lead
logically, in a causally related manner, to a coherent vision of planetary
formation with profound implications including, but not limited to, (a) Earth
formation as a giant gaseous Jupiter-like planet with vast amounts of stored
energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal
of approximately 300 Earth-masses of primordial gases from the Earth, which
began Earth's decompression process, making available the stored energy of
protoplanetary compression for driving geodynamic processes, which I have
described by the new whole-Earth decompression dynamics and which is
responsible for emplacing heat at the mantle-crust-interface at the base of the
crust through the process I have described, called mantle decompression
thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable
of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets
entitled Neutrino Geophysics Added final corrections for publicatio
- …