1,950 research outputs found
The role of binocularity in anisometropic amblyopia
Anisometropic amblyopia is unilateral by definition and current treatment recommendations reflect that characteristic. However, recent research suggests a binocular component that deserves consideration. The aim of this review is to consider the levels of anisometropia deemed amblyogenic, and the cortical changes that occur in the presence of anisometropic amblyopia. Particular attention is given to cortical changes that impact the binocularity of these individuals. Knowledge of binocular deficits in anisometropic amblyopia has implications for current, accepted treatment regimens which are monocular in nature. Therefore, the integrity of binocular function in anisometropic amblyopia and its impact on the visual outcome will be evaluated. Given the rise in binocular treatments under clinical trial for amblyopia, this review also aims to evaluate the evidence of potentially enhanced benefits to anisometropic amblyopes from proposed new binocular therapies
Dynamics of tilt-based browsing on mobile devices
A tilt-controlled photo browsing method for small mobile devices is presented. The implementation uses continuous inputs from an accelerometer, and a multimodal (visual, audio and vibrotactile) display coupled with the states of this model. The model is based on a simple physical model, with its characteristics shaped to enhance usability. We show how the dynamics of the physical model can be shaped to make the handling qualities of the mobile device fit the browsing task. We implemented the proposed algorithm on Samsung MITs PDA with tri-axis accelerometer and a vibrotactile motor. The experiment used seven novice users browsing from 100 photos. We compare a tilt-based interaction method with a button-based browser and an iPod wheel. We discuss the usability performance and contrast this with subjective experience from the users. The iPod wheel has significantly poorer performance than button pushing or tilt interaction, despite its commercial popularity
Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation
In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr.
vol. 98), the main features of the motion of the pair Enceladus-Dione were
analyzed in the frozen regime, i.e., without considering the tidal evolution.
Here, the results of a great deal of numerical simulations of a pair of
satellites similar to Enceladus and Dione crossing the 2:1 mean-motion
resonance are shown. The resonance crossing is modeled with a linear tidal
theory, considering a two-degrees-of-freedom model written in the framework of
the general three-body planar problem. The main regimes of motion of the system
during the passage through resonance are studied in detail. We discuss our
results comparing them with classical scenarios of tidal evolution of the
system. We show new scenarios of evolution of the Enceladus-Dione system
through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical
Astronom
Coexistence of ferro- and antiferromagnetic order in Mn-doped NiMnGa
Ni-Mn-Ga is interesting as a prototype of a magnetic shape-memory alloy
showing large magnetic field induced strains. We present here results for the
magnetic ordering of Mn-rich Ni-Mn-Ga alloys based on both experiments and
theory. Experimental trends for the composition dependence of the magnetization
are measured by a vibrating sample magnetometer (VSM) in magnetic fields of up
to several tesla and at low temperatures. The saturation magnetization has a
maximum near the stoichiometric composition and it decreases with increasing Mn
content. This unexpected behaviour is interpreted via first-principles
calculations within the density-functional theory. We show that extra Mn atoms
are antiferromagnetically aligned to the other moments, which explains the
dependence of the magnetization on composition. In addition, the effect of Mn
doping on the stabilization of the structural phases and on the magnetic
anisotropy energy is demonstrated.Comment: 4 pages, 3 figure
Formation mechanism of electrical discharge TiC-Fe composite coatings
Comparison of electric discharge (ED) processed single deposit and continuum TiC-Fe cermet coatings, formed from a sacrificial powder metallurgy TiC tool electrode at negative polarity, on 304 stainless steel, provided insight into the ED coating (EDC) formation mechanism. A deposit from a single spark event was dominated by TiC, phase separated from a ∼2 wt% Fe matrix, with strongly aligned grains and banded microstructure, indicative of solidification from the coating/substrate interface. Conversely, a continuum coating, subjected to ∼200 spark events per location, exhibited a more complex, banded microstructure, with a mixture of equiaxed and columnar TiC grains within a ∼30 wt% Fe-based matrix, along with some concentrations of carbon from the oil dielectric. It is considered that each sparking event remelts previously solidified coating material, with or without further TiC particle incorporation, leading to gradual TiC dilution and the development of a TiC-Fe composite coating with increasing levels of substrate material forming the matrix
Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn
The Cassini spacecraft collects high resolution images of the saturnian
satellites and reveals the surface of these new worlds. The shape and rotation
of the satellites can be determined from the Cassini Imaging Science Subsystem
data, employing limb coordinates and stereogrammetric control points. This is
the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new
rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011).
Especially, Epimetheus is characterized by its horseshoe shape orbit and the
presence of the swap is essential to introduce explicitly into rotational
models. During its journey in the saturnian system, Cassini spacecraft
accumulates the observational data of the other satellites and it will be
possible to determine the rotational parameters of several of them. To prepare
these future observations, we built rotational models of the coorbital (also
called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition
to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and
L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital
of Dione. The goal of this study is to understand how the departure from the
Keplerian motion induced by the perturbations of the coorbital body, influences
the rotation of these satellites. To this aim, we introduce explicitly the
perturbation in the rotational equations by using the formalism developed by
Erdi (1977) to represent the coorbital motions, and so we describe the
rotational motion of the coorbitals, Janus and Epimetheus included, in compact
form
An extrapolation of Foucault's Technologies of the Self to effect positive transformation in the intensivist as teacher and mentor
In critical care medicine, teaching and mentoring practices are extremely important in regard to attracting and retaining young trainees and faculty in this important subspecialty that has a scarcity of needed personnel in the USA. To this end, we argue that Foucault’s Technologies of the Self is critical background reading when endeavoring to effect the positive transformation of faculty into effective teachers and mentors
- …