3,083 research outputs found

    Book review: Fifty Years of Invasion Ecology: The Legacy of Charles Elton

    Full text link

    A comparison of short-term marking methods for small frogs using a model species, the striped marsh frog (Limnodynastes peronii)

    Full text link
    We compared three methods of marking individual small frogs for identification in short-term studies (several days) using a model species, Limnodynastes peronii (the striped marsh frog). We performed a manipulative experiment under laboratory conditions to compare retention times of gentian violet, mercurochrome and powdered fluorescent pigment. Gentian violet produced the most durable marks with retention times between two and four days. Mercurochrome was retained for at least one day by all treated frogs. Fluorescent pigment was either not retained at all or for one day at most, which suggests that this marking method may not be reliable for short-term studies where identification is required. No adverse reactions to any of the marking methods were detected in our study. Our findings indicate that gentian violet represents a promising alternative as a minimally invasive marking technique for studies of small frogs requiring only shortterm retention of identification marks

    A predictive framework and review of the ecological impacts of exotic plant invasions on reptiles and amphibians

    Full text link
    The invasive spread of exotic plants in native vegetation can pose serious threats to native faunal assemblages. This is of particular concern for reptiles and amphibians because they form a significant component of the world's vertebrate fauna, play a pivotal role in ecosystem functioning and are often neglected in biodiversity research. A framework to predict how exotic plant invasion will affect reptile and amphibian assemblages is imperative for conservation, management and the identification of research priorities. Here, we present a new predictive framework that integrates three mechanistic models. These models are based on exotic plant invasion altering: (1) habitat structure; (2) herbivory and predator-prey interactions; (3) the reproductive success of reptile and amphibian species and assemblages. We present a series of testable predictions from these models that arise from the interplay over time among three exotic plant traits (growth form, area of coverage, taxonomic distinctiveness) and six traits of reptiles and amphibians (body size, lifespan, home range size, habitat specialisation, diet, reproductive strategy). A literature review provided robust empirical evidence of exotic plant impacts on reptiles and amphibians from each of the three model mechanisms. Evidence relating to the role of body size and diet was less clear-cut, indicating the need for further research. The literature provided limited empirical support for many of the other model predictions. This was not, however, because findings contradicted our model predictions but because research in this area is sparse. In particular, the small number of studies specifically examining the effects of exotic plants on amphibians highlights the pressing need for quantitative research in this area. There is enormous scope for detailed empirical investigation of interactions between exotic plants and reptile and amphibian species and assemblages. The framework presented here and further testing of predictions will provide a basis for informing and prioritising environmental management and exotic plant control efforts. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society

    Landscape variation in plant leaf flammability is driven by leaf traits responding to environmental gradients:

    Full text link
    © 2018 Krix and Murray. Landscape differences in environmental conditions select for divergences among plant species in strategically important leaf traits such as leaf mass per area (LMA) and leaf area (LA). Interspecific variation in some of these same leaf traits has been associated to varying degrees with differences among species in leaf flammability, including the attributes ignitibility, sustainability, and combustibility. Yet, how environmentally selected variation in leaf traits drives variation in leaf flammability at landscape scales remains largely unknown. Here, we compared leaf traits and flammability attributes between species of sheltered forest vegetation (low light, moist habitat) and plant species of exposed woodland vegetation (high light, dry habitat) in a fire-prone landscape of south-eastern Australia. We found that leaves of sheltered forest species were significantly more flammable via both higher ignitibility and combustibility compared with exposed woodland species. These significant differences in leaf ignitibility and combustibility were underpinned by sheltered forest species having leaves with significantly larger LA and lower LMA compared with exposed woodland species. Further, multiple regression analyses revealed that both LA and LMA were significantly and uniquely related to faster time to ignition (TTI; ignitibility) and higher mean mass loss rate (combustibility). Most notably, although significantly higher fuel moisture content (FMC) of leaves of sheltered forest species significantly lengthened TTI, the lower LMA of these species played a more critical role in reducing TTI, with low LMA explaining more unique variation (partial r2 = 0.78) in high leaf ignitibility than low FMC (partial r2 = 0.49). Our findings provide the first evidence that landscape-scale variation in leaf flammability is tightly coordinated with the primary strategic response of the leaf traits LMA and LA to an environmental gradient. Furthermore, projections for increasing wildfire frequency and intensity in the region will likely allow wildfires to overcome the once protective nature provided by topography to sheltered forest vegetation, which means that higher leaf flammability in sheltered forest species has the potential to exacerbate the effects of changing weather conditions to place sheltered forest habitat, their plants, and their animals, at even higher risk of catastrophic wildfire

    Rapid Development of Adaptive, Climate-Driven Clinal Variation in Seed Mass in the Invasive Annual Forb Echium plantagineum L.

    Get PDF
    We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid. © 2012 Konarzewski et al

    Hotter nests produce hatchling lizards with lower thermal tolerance

    Full text link
    © 2017. Published by The Company of Biologists Ltd. In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii, at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CTmax 38.7°C) and a higher critical thermal minimum (CTmin 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CTmax of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CTmax can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming

    Decontaminating terrestrial oil spills: A comparative assessment of dog fur, human hair, peat moss and polypropylene sorbents

    Full text link
    Terrestrial oil spills have severe and continuing consequences for human communities and the natural environment. Sorbent materials are considered to be a first line of defense method for directly extracting oil from spills and preventing further contaminant spread, but little is known on the performance of sorbent products in terrestrial environments. Dog fur and human hair sorbent products were compared to peat moss and polypropylene sorbent to examine their relative e ectiveness in adsorbing crude oil from di erent terrestrial surfaces. Crude oil spills were simulated using standardized microcosm experiments, and contaminant adsorbency was measured as percentage of crude oil removed from the original spilled quantity. Sustainable-origin absorbents made from dog fur and human hair were equally e ective to polypropylene in extracting crude oil from nonand semi-porous land surfaces, with recycled dog fur products and loose-form hair showing a slight advantage over other sorbent types. In a sandy terrestrial environment, polypropylene sorbent was significantly better at adsorbing spilled crude oil than all other tested products

    Selecting low-flammability plants as green firebreaks within sustainable urban garden design

    Full text link
    In response to an increasing risk of property loss from wildfires at the urban–wildland interface, there has been growing interest around the world in the plant characteristics of urban gardens that can be manipulated to minimize the chances of property damage or destruction. To date, considerable discussion of this issue can be found in the ‘grey’ literature, covering garden characteristics such as the spatial arrangement of plants in relation to each other, proximity of plants to houses, plant litter and fuel reduction, and the use of low-flammability plants as green firebreaks [1,2,3,4]. Recently, scientific studies from a geographically wide range of fire-prone regions including Europe [5], the USA [6], Australia [7], South Africa [8], and New Zealand [9] have been explicitly seeking to quantify variation among plant species with respect to different aspects of their flammability and to identify low-flammability horticultural species appropriate for implementation as green firebreaks in urban landscapes. The future prospects of this scientific work will ultimately depend on how successfully the results are integrated into the broader context of garden design in fire-prone regions at the urban–wildland interface. Although modern design of urban gardens must consider more than just the issue of green firebreaks, we and others [10,11] believe that selection of low-flammability plants should be high on the priority list of plant selection criteria in fire-prone regions

    A Predictive Model of Leaf Flammability Using Leaf Traits and Radiant Heat Flux for Plants of Fire-Prone Dry Sclerophyll Forest

    Full text link
    The differential flammability of individual plant species in landscape-scale fire behaviour is an important consideration, but one that is often overlooked. This is in part due to a relative dearth in the availability of plant flammability data. Here, we present a highly accurate predictive model of the likelihood of plant leaves entering flaming combustion as a function of leaf mass per area (LMA), leaf area (LA) and radiant heat flux using species of fire-prone dry sclerophyll forests of south-eastern Australia. We validated the performance of the model on two separate datasets, and on plant species not included in the model building process. Our model gives accurate predictions (75–84%) of leaf flaming with potential application in the next generation of fire behaviour models. Given the global wealth of species’ data for LMA and LA, in stark contrast to leaf flammability data, our model has the potential to improve understanding of forest flammability in the absence of leaf flammability information.</jats:p

    Growth and elemental accumulation by canola on soil amended with coal fly ash

    Full text link
    To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO2 assimilation (A), transpiration, stomacal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into die whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits. Copyright © 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved
    • …
    corecore