16,779 research outputs found

    Particle-in-cell simulation of a mildly relativistic collision of an electron-ion plasma carrying a quasi-parallel magnetic field: Electron acceleration and magnetic field amplification at supernova shocks

    Full text link
    Plasma processes close to SNR shocks result in the amplification of magnetic fields and in the acceleration of electrons, injecting them into the diffusive acceleration mechanism. The acceleration of electrons and the B field amplification by the collision of two plasma clouds, each consisting of electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of 25 keV are considered. A quasi-planar shock forms at the front of the dense plasma cloud. It is mediated by a circularly left-hand polarized electromagnetic wave with an electric field component along the guiding magnetic field. Its propagation direction is close to that of the guiding field and orthogonal to the collision boundary. It has a low frequency and a wavelength that equals several times the ion inertial length, which would be indicative of a dispersive Alfven wave close to the ion cyclotron resonance frequency of the left-handed mode (ion whistler), provided that the frequency is appropriate. However, it moves with the super-alfvenic plasma collision speed, suggesting that it is an Alfven precursor or a nonlinear MHD wave such as a Short Large-Amplitude Magnetic Structure (SLAMS). The growth of the magnetic amplitude of this wave to values well in excess of those of the quasi-parallel guiding field and of the filamentation modes results in a quasi-perpendicular shock. We present evidence for the instability of this mode to a four wave interaction. The waves developing upstream of the dense cloud give rise to electron acceleration ahead of the collision boundary. Energy equipartition between the ions and the electrons is established at the shock and the electrons are accelerated to relativistic speeds.Comment: 16 pages, 18 figures, Accepted for publication by Astron & Astrophy

    Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments

    Full text link
    With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies for analyzing large spatial datasets. Scalable spatial process models have been found especially attractive due to their richness and flexibility and, particularly so in the Bayesian paradigm, due to their presence in hierarchical model settings. However, the vast majority of research articles present in this domain have been geared toward innovative theory or more complex model development. Very limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article is submitted to the Practice section of the journal with the aim of developing massively scalable Bayesian approaches that can rapidly deliver Bayesian inference on spatial process that are practically indistinguishable from inference obtained using more expensive alternatives. A key emphasis is on implementation within very standard (modest) computing environments (e.g., a standard desktop or laptop) using easily available statistical software packages without requiring message-parsing interfaces or parallel programming paradigms. Key insights are offered regarding assumptions and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table

    Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes

    Get PDF
    We review the theoretical description of spin-orbit scattering and electron spin resonance in carbon nanotubes. Particular emphasis is laid on the effects of electron-electron interactions. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed both using the effective low-energy field theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard ladders. For single-wall tubes, the field theoretical description predicts a double peak spectrum linked to the existence of spin-charge separation. The numerical analysis basically confirms this picture, but also predicts additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J. Phys. Cond. Mat., published versio

    The motion of a satellite of the moon

    Get PDF
    Analytical solution for motion of lunar orbital satellit

    Особливості зачину актів купівлі-продажу (на матеріалі Пирятинських міських книг)

    Get PDF
    У статті розглянуто особливості структурних компонентів початкового протоколу актів купівлі-продажу в українській мові кінця ХVІІ – другої третини ХVІІІ ст. На численних прикладах проілюстровано специфічні ознаки власне пирятинських актів, а також виявлено спільні риси, характерні для тогочасного діловодства взагалі

    Play in rats: association across contexts and types, and analysis of structure

    Get PDF
    Play has been proposed as a promising indicator of positive animal welfare. We aimed to study play in rats across contexts (conspecific/heterospecific) and types (social: pinning, being pinned; solitary: scampering), and we investigated its structure using behavioral sequence analysis. Group-housed (three per cage) adolescent male Lister Hooded rats (n = 21) were subjected to a Play-In-Pairs test: after a 3 hour isolation period, a pair of cage-mates was returned to the home cage and both social and solitary play were scored for 20 min. This procedure was repeated for each pair combination across three consecutive days, and individual play scores were calculated. Heterospecific play was measured using a Tickling test: rats were individually tickled by the experimenter through bouts of gentle, rapid finger movements on their underside, and the number of positive 50 kHz frequency modulated vocalizations and experimenter-directed approach behaviors were recorded. Both of the above tests were compared with social play in the home cage. While conspecific play in both the Play-In-Pairs test and home cage were correlated, both seemed to be unrelated to heterospecific play in the Tickling test. During the Play-In-Pairs test, although both solitary and social play types occurred, they were unrelated, and solitary locomotor play of one rat did not predict the subsequent play behavior of its cage mate. Analysis of play structure revealed that social play occurred more often in bouts of repeated behaviors while solitary play sequences did not follow a specific pattern. If play is to be used as an indicator of positive welfare in rats, context, type and structure differences should be taken into account

    Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    Full text link
    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter KK. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure

    The Effects of a High Grass Input Feeding System Compared to High Concentrate Input Feeding System Offered to Spring Calving Dairy Cows in Early Lactation

    Get PDF
    Grazed grass is the cheapest feed available on Irish dairy farms. The inclusion of grass in the diet of the spring-calving dairy cow in early lactation is recommended. Previous studies focused on introducing grazed herbage into the cows diet in early spring in conjunction with grass silage and concentrate, and compared this to cows fed indoors. The objective of this study was to compare the milk production and feed budget of two contrasting early lactation feeding regimes. One regime was based on a high herbage inclusion with a low concentrate level (HG), while the other was based on a high concentrate inclusion with grass silage (HC)
    corecore