729 research outputs found
Carter-Payne homomorphisms and Jantzen filtrations
We prove a q-analogue of the Carter-Payne theorem in the case where the
differences between the parts of the partitions are sufficiently large. We
identify a layer of the Jantzen filtration which contains the image of these
Carter-Payne homomorphisms and we show how these homomorphisms compose.Comment: 30 page
Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer
Dynamins are mechano-chemical GTPases involved in the remodeling of cellular membranes. In this study, we have investigated the mechanism of dynamin-related protein 1 (Drp1), a key mediator of mitochondrial fission. To date, it is unclear how Drp1 assembles on the mitochondrial outer membrane in response to different lipid signals to induce membrane fission. Here, we present cryo-EM structures of Drp1 helices on nanotubes with distinct lipid compositions to mimic membrane interactions with the fission machinery. These Drp1 polymers assemble exclusively through stalk and G-domain dimerizations, which generates an expanded helical symmetry when compared to other dynamins. Interestingly, we found the characteristic gap between Drp1 and the lipid bilayer was lost when the mitochondrial specific lipid cardiolipin was present, as Drp1 directly interacted with the membrane. Moreover, this interaction leads to a change in the helical structure, which alters G-domain interactions to enhance GTPase activity. These results demonstrate how lipid cues at the mitochondrial outer membrane (MOM) can alter Drp1 structure to activate the fission machinery
The effect of Nb on the corrosion and hydrogen pick-up of Zr alloys
Abstract Zr-Nb alloys are known to perform better in corrosion and hydrogen pick-up than other Zr alloys but the mechanism by which this happens is not well understood. Atomistic simulations using density functional theory of both tetragonal and monoclinic ZrO2 were performed, with intrinsic defects and Nb dopants. The overall defect populations with respect to oxygen partial pressure were calculated and presented in the form of Brouwer diagrams. Nb is found to favour 5Â +Â in monoclinic ZrO2 at all partial pressures, but can exist in oxidation states ranging from 5Â +Â to 3Â +Â in the tetragonal phase. Nb5+ is charge balanced by Zr vacancies in both phases, suggesting that contrary to previous assumptions, Nb does not act as an n-type dopant in the oxide layer. Clusters containing oxygen vacancies were considered, Nb2+ was shown to exist in the tetragonal phase with a binding energy of 2.4Â eV. This supports the proposed mechanism whereby low oxidation state Nb ions (2Â +Â or 3+) charge balance the build-up of positive space-charge in the oxide layer, increasing oxygen vacancy and electron mobility, leading to near-parabolic corrosion kinetics and a reduced hydrogen pick-up. Previous experimental work has shown that tetragonal ZrO2 transforms to the monoclinic phase during transition, and that during transition a sharp drop in the instantaneous hydrogen pick-up fraction occurs. The oxidation of lower charge state Nb defects to Nb5+ during this phase change, and the consequent temporary n-doping of the oxide layer, is proposed as an explanation for the drop in hydrogen pick-up during transition
The effect of Nb on the corrosion and hydrogen pick-up of Zr alloys
Abstract Zr-Nb alloys are known to perform better in corrosion and hydrogen pick-up than other Zr alloys but the mechanism by which this happens is not well understood. Atomistic simulations using density functional theory of both tetragonal and monoclinic ZrO2 were performed, with intrinsic defects and Nb dopants. The overall defect populations with respect to oxygen partial pressure were calculated and presented in the form of Brouwer diagrams. Nb is found to favour 5Â +Â in monoclinic ZrO2 at all partial pressures, but can exist in oxidation states ranging from 5Â +Â to 3Â +Â in the tetragonal phase. Nb5+ is charge balanced by Zr vacancies in both phases, suggesting that contrary to previous assumptions, Nb does not act as an n-type dopant in the oxide layer. Clusters containing oxygen vacancies were considered, Nb2+ was shown to exist in the tetragonal phase with a binding energy of 2.4Â eV. This supports the proposed mechanism whereby low oxidation state Nb ions (2Â +Â or 3+) charge balance the build-up of positive space-charge in the oxide layer, increasing oxygen vacancy and electron mobility, leading to near-parabolic corrosion kinetics and a reduced hydrogen pick-up. Previous experimental work has shown that tetragonal ZrO2 transforms to the monoclinic phase during transition, and that during transition a sharp drop in the instantaneous hydrogen pick-up fraction occurs. The oxidation of lower charge state Nb defects to Nb5+ during this phase change, and the consequent temporary n-doping of the oxide layer, is proposed as an explanation for the drop in hydrogen pick-up during transition
The effect of Sn-VO defect clustering on Zr alloy corrosion
Density functional theory simulations were used to study Sn defect clusters in the oxide layer of Zr-alloys. Clustering was shown to play a key role in the accommodation of Sn in ZrO2, with the {SnZr:VO}× bound defect cluster dominant at all oxygen partial pressures below 10-20 atm, above which Sn Zr × is preferred. {SnZr:VO}× is predicted to increase the tetragonal phase fraction in the oxide layer, due to the elevated oxygen vacancy concentration. As corrosion progresses, the transition to Sn Zr × , and resultant destabilisation of the tetragonal phase, is proposed as a possible explanation for the early first transition observed in Sn-containing Zr-Nb alloys
Field-induced quantum critical point in CeCoIn_5
The resistivity of CeCoIn_5 was measured down to 20 mK in magnetic fields of
up to 16 T. With increasing field, we observe a suppression of the non-Fermi
liquid behavior, rho~T, and the development of a Fermi liquid state, with its
characteristic rho=rho_0+AT^2 dependence. The field dependence of the T^2
coefficient shows critical behavior with an exponent of ~4/3. This is evidence
for a new field-induced quantum critical point, occuring in this case at a
critical field which coincides with the superconducting upper critical field
H_c2.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding
A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel
Point and small cluster defects in magnesium aluminate spinel have been studied from a first principles viewpoint. Typical point defects that occur during collision cascade simulations are cation anti-site defects, which have a small formation energy and are very stable, O and Mg split interstitials and vacancies. Isolated Al interstitials were found to be energetically unfavourable
but could occur as part of a split Mg-Al pair or as a three atom-three vacancy Al ‘ring’ defect, previously observed in collision cascades using empirical potentials. The structure and energetics
of the defects were investigated using density functional theory (DFT) and the results compared to simulations using empirical fixed-charge potentials. Each point defect was studied in a variety of supercell sizes in order to ensure convergence. It was found that empirical potential simulations significantly overestimate formation energies, but that the type and relative stability of the defects are well-predicted by the empirical potentials both for point defects and small defect clusters
Assessing Damages: The 1983 Israeli Bank Shares Crisis
In 1983 Israeli bank shares collapsed following several years during which the bank had actively intervened to promote share prices and thereby contributed to a 300% rise in real terms. During the crisis the government assumed control of the banks, which they did not begin to sell back to the public until 1993. We compare 1993 bank share prices after the banks were partially re-listed on the stock market values were4 billion) and by taxpayers ($6 billion). Of this latter amount, two-thirds represent a transfer from the government to the shareholders, while approximately one-third represents an efficiency loss- and hence a direct cost- resulting from government ownership of the banks for 10 years following the crisis. The results highlight the risk inherent in a banking system that is both concentrated and universal and illustrates the costs associated with sustained government ownership
Reference points for predators will progress ecosystem-based management of fisheries.
Ecosystem-based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem-based management in six case study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case studies 58 include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem-based management
Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes
The Mott-Hubbard transition is studied for a Hubbard model with orbital
degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments,
we conjecture that the Mott-Hubbard transition takes place for U/W \propto
\sqrt{N}, where U is the Coulomb interaction and W is the band width. This is
supported by exact diagonalization and Monte-Carlo calculations. Realistic
parameters for the doped fullerenes lead to the conclusion that stoichiometric
A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated
metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B
Rapid Com
- …