142 research outputs found
Picosecond ionization dynamics in femtosecond filaments at high pressures
We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases
The Nature of Nurture: Poverty, Father Absence and Gender Equality
Progressive family policy regimes typically aim to promote and protect women’s opportunities to participate in the workforce. These policies offer significant benefits to affluent, two-parent households. A disproportionate number of low-income and impoverished families, however, are headed by single mothers. How responsive are such policies to the objectives of these mothers and the needs of their children? This chapter argues that one-size-fits-all family policy regimes often fail the most vulnerable household and contribute to intergenerational poverty in two ways: by denying at-risk children adequate parenting, and by undermining their mothers’ legitimate interest in nurturing and caring for their own children. The capabilities of these mothers and the well-being of their children are better served by policies which recognise maternal caregiving as a productive and valuable occupation meriting equal respect and social support
Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel
<p>Abstract</p> <p>Background</p> <p>We have studied the <it>in vitro </it>and <it>in vivo </it>utility of polyethylene glycol (PEG)-hydrogels for the development of an anticancer drug 5-fluorouracil (5-FU) delivery system.</p> <p>Methods</p> <p>A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group)/or a 5-FU-loaded PEG-hydrogel (treated group) at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC) cell line, A549 was inoculated to male nude mice with a cell density of 3 × 10<sup>6</sup>. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR) over the duration of the study.</p> <p>Results</p> <p>In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT) of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p < 0.05). In the pharmacodynamic study, A549 tumor growth was significantly inhibited in the 5-FU-loaded PEG-hydrogel group in comparison to the untreated group beginning on Day 14 (p < 0.05-0.01). Moreover, the 5-FU-loaded PEG-hydrogel group had a significantly enhanced tumor IR (p < 0.05) compared to the free 5-FU drug treatment group.</p> <p>Conclusion</p> <p>We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system.</p
Phosphorothioate oligonucleotides, suramin and heparin inhibit DNA-dependent protein kinase activity
Phosphorothioate oligonucleotides and suramin bind to heparin binding proteins including DNA polymerases, and inhibit their functions. In the present study, we report inhibition of DNA-dependent protein kinase activity by phosphorothioate oligonucleotides, suramin and heparin. Inhibitory effect of phosphorothioate oligonucleotides on DNA-dependent protein kinase activity was increased with length and reached a plateau at 36-mer. The base composition of phosphorothioate oligonucleotides did not affect the inhibitory effect. The inhibitory effect by phosphorothioate oligodeoxycytidine 36-mer can be about 200-fold greater than that by the phosphodiester oligodeoxycytidine 36-mer. The inhibitory effect was also observed with purified DNA-dependent protein kinase, which suggests direct interaction between DNA-dependent protein kinase and phosphorothioate oligonucleotides. DNA-dependent protein kinase will have different binding positions for double-stranded DNA and phosphorothioate oligodeoxycytidine 36-mer because they were not competitive in DNA-dependent protein kinase activation. Suramin and heparin inhibited DNA-dependent protein kinase activity with IC50 of 1.7 μM and 0.27 μg ml−1 respectively. DNA-dependent protein kinase activities and DNA double-stranded breaks repair in cultured cells were significantly suppressed by the treatment with suramin in vivo. Our present observations suggest that suramin may possibly result in sensitisation of cells to ionising radiation by inactivation of DNA-dependent protein kinase and the impairment of double-stranded breaks repair
A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular “band-aid” for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in eukaryotic cells
Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications
Introduction: Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods: In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results: We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions: We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation
Calcium ion currents mediating oocyte maturation events
During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed
- …