17 research outputs found

    Alteration of Sarcoplasmic Reticulum Ca

    Get PDF
    Mutations of Ca(2+)-activated proteases (calpains) cause muscular dystrophies. Nevertheless, the specific role of calpains in Ca(2+) signalling during the onset of dystrophies remains unclear. We investigated Ca(2+) handling in skeletal cells from calpain 3-deficient mice. [Ca(2+)](i) responses to caffeine, a ryanodine receptor (RyR) agonist, were decreased in −/− myotubes and absent in −/− myoblasts. The −/− myotubes displayed smaller amplitudes of the Ca(2+) transients induced by cyclopiazonic acid in comparison to wild type cells. Inhibition of L-type Ca(2+) channels (LCC) suppressed the caffeine-induced [Ca(2+)](i) responses in −/− myotubes. Hence, the absence of calpain 3 modifies the sarcoplasmic reticulum (SR) Ca(2+) release, by a decrease of the SR content, an impairment of RyR signalling, and an increase of LCC activity. We propose that calpain 3-dependent proteolysis plays a role in activating support proteins of intracellular Ca(2+) signalling at a stage of cellular differentiation which is crucial for skeletal muscle regeneration

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin

    Abnormal distribution of calcium-handling proteins: a novel distinctive marker in core myopathies.

    No full text
    International audienceCentral core disease (CCD) and multi-minicore disease (MmD) are muscle disorders characterized by foci of mitochondria depletion and sarcomere disorganization ("cores") in muscle fibers. Although core myopathies are the most frequent congenital myopathies, their pathogenesis remains elusive and specific diagnostic markers are lacking. Core myopathies are mostly caused by mutations in 2 sarcoplasmic reticulum proteins: the massive Ca-release channel RyR1 or the selenoprotein N (SelN) of unknown function. To search for distinctive markers and to obtain further pathophysiological insight, we identified the molecular defects in 12 core myopathy patients and analyzed the immunolocalization of 6 proteins of the Ca-release complex in their muscle biopsies. In 7 cases with RYR1 mutations (6 CCD, one MmD), RyR1 was depleted from the cores; in contrast, the other proteins of the sarcoplasmic reticulum (calsequestrin, SERCA1/2, and triadin) and the T-tubule (dihydropyridine receptor-alpha1subunit) accumulated within or around the lesions, suggesting an original modification of the Ca-release complex protein arrangement. Conversely, all Ca-related proteins were distributed normally in 5 MmD cases with SelN mutations. Our results provide an appropriate tool to orientate the differential and molecular diagnosis of core myopathies and suggest that different pathophysiological mechanisms lead to core formation in SelN- and in RyR1-related core myopathies

    Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy

    No full text
    International audienceCentronuclear myopathy (CNM) is a slowly progressive congenital myopathy characterized by abnormal centrally located nuclei in a large number of muscle fibres. Recently, different missense mutations affecting the middle domain of the dynamin 2 (DNM2) have been shown to cause autosomal dominant CNM. In order to better define the phenotype of DNM2-related CNM, we report here on the clinical and muscle imaging findings of 10 patients harbouring DNM2 mutations. DNM2-CNM is characterized by slowly progressive muscular weakness usually beginning in adolescence or early adulthood. In addition to bilateral ptosis, our data show that distal muscle weakness often exceeds proximal involvement. Furthermore, electrophysiological investigations frequently demonstrated signs of mild axonal peripheral nerve involvement, and electromyographical examination may show neuropathic changes in addition to the predominant myopathic changes. These features overlap with findings seen in the phenotype of DNM2-related autosomal dominant Charcot-Marie-Tooth disease type 2B. In all 10 DNM2-CNM patients, muscle computer tomography assessment showed a consistent pattern of muscular involvement and a characteristic temporal course with early and predominant distal muscle involvement, and later affection of the posterior thigh compartment and gluteus minimus muscles. The recognition of this specific imaging pattern of muscle involvement-distinct to the reported patterns in other congenital myopathies-may enable a better selection for direct genetic testing

    Transition de la médecine pédiatrique à la médecine pour adultes dans les maladies autoimmunes et autoinflammatoires rares

    No full text
    La commission « Transition » de la filière de santé des maladies auto-immunes et auto-inflammatoires rares a développé des outils et émis des recommandations pour la prise en charge des adolescents et jeunes adultes atteints de ces maladies chroniques évoluant souvent par poussées, durant la période de transition de la médecine pédiatrique vers la médecine pour adultes. L’enjeu de l’adhésion du jeune patient à la poursuite de son parcours de soin dans le système de santé des adultes rend particulièrement importante l’alliance thérapeutique avec son médecin pédiatre puis son médecin pour adultes. Le groupe de travail issu de cette commission a ainsi mené une enquête sur la façon dont les médecins et les jeunes patients perçoivent leur relation durant la période de la transition du suivi médical

    Muscle imaging in dominant core myopathies linked or unlinked to the ryanodine receptor 1 gene.

    No full text
    International audienceOBJECTIVE: To characterize the muscle involvement of patients with central core disease (CCD) caused by mutations in the ryanodine receptor 1 gene (RYR1) and to compare these findings with those from patients with core myopathies unlinked to the RYR1 gene. METHODS: We performed a systematic muscular imaging assessment in 11 patients with an RYR1 gene mutation and compared these findings with those of 5 patients from two unrelated families with autosomal dominant core myopathies not linked to RYR1, ACTA1, or MYH7 gene loci. RESULTS: All patients with RYR1 CCD had a characteristic pattern with predominant involvement of the gluteus maximus, adductor magnus, sartorius, vastus intermediolateralis, soleus, and lateral gastrocnemius muscles. In contrast, muscle CT in the first family not linked to RYR1 showed predominant affection of the gluteus minimus and hamstring muscles, whereas the second family presented with predominant involvement of the gluteus minimus, vastus intermediolateralis, tibialis anterior, and medial gastrocnemius muscles. In addition to muscle imaging data, we present detailed information on the clinical and pathologic findings of these novel phenotypes of core myopathies not linked to RYR1. CONCLUSIONS: Our data suggest genetic heterogeneity in autosomal dominant core myopathies and the existence of additional unidentified genes

    Calpain 3 mRNA expression in mice after denervation and during muscle regeneration.

    No full text
    Lack of functional calpain 3 in humans is a cause of limb girdle muscular dystrophy, but the function(s) of calpain 3 remain(s) unknown. Special muscle conditions in which calpain 3 is downregulated could yield valuable clues to the understanding of its function(s). We monitored calpain 3 mRNA amounts by quantitative RT-PCR and compared them with those of alpha-skeletal actin mRNA in mouse leg muscles for different types of denervation and muscle injury. Intact muscle denervation reduced calpain 3 mRNA expression by a factor of 5 to 10, while alpha-skeletal actin mRNA was reduced in a slower and less extensive manner. Muscle injury (denervation-devascularization), which leads to muscle degeneration and regeneration, induced a 20-fold decrease in the mRNA level of both calpain 3 and alpha-skeletal actin. Furthermore, whereas in normal muscle and intact denervated muscle, the full-length transcript is the major calpain 3 mRNA, in injured muscle, isoforms lacking exon 6 are predominant during the early regeneration process. These data suggest that muscle condition determines the specific calpain 3 isoform pattern of expression and that calpain 3 expression is downregulated by denervation
    corecore