129 research outputs found
Calsequestrins in skeletal and cardiac muscle from adult Danio rerio
Calsequestrin (Casq) is a high capacity, low affinity Ca2+-binding protein, critical for Ca2+-buffering in cardiac and skeletal muscle sarcoplasmic reticulum. All vertebrates have multiple genes encoding for different Casq isoforms. Increasing interest has been focused on mammalian and human Casq genes since mutations of both cardiac (Casq2) and skeletal muscle (Casq1) isoforms cause different, and sometime severe, human pathologies. Danio rerio (zebrafish) is a powerful model for studying function and mutations of human proteins. In this work, expression, biochemical properties cellular and sub-cellular localization of D. rerio native Casq isoforms are investigated. By quantitative PCR, three mRNAs were detected in skeletal muscle and heart with different abundances. Three zebrafish Casqs: Casq1a, Casq1b and Casq2 were identified by mass spectrometry (Data are available via ProteomeXchange with identifier PXD002455). Skeletal and cardiac zebrafish calsequestrins share properties with mammalian Casq1 and Casq2. Skeletal Casqs were found primarily, but not exclusively, at the sarcomere Z-line level where terminal cisternae of sarcoplasmic reticulum are located
Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging
Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner
Single muscle fiber proteomics reveals unexpected mitochondrial specialization
Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity
Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype
Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype
Uno scavo per tutti: esperienze e buone pratiche di accessibilità e inclusione nel cantiere archeologico dell’Università di Trieste ad Aquileia
In recent years, museums, research institutions, cultural institutes, professionals and associations have promoted projects dedicated to adapting and expanding the community’s access to cultural heritage. The University of Trieste, engaged since 2005 in the excavation of the insula between the Forum and the fluvial port, retraces the participatory archaeology activities carried out in the nearly twenty years of presence in Aquileia. Among the main interventions carried out are listed workshops and assisted paths on the construction site, conferences, teaching aids and exhibitions, which show how the excavation-school has opened up to the community
Effect of Helicobacter pylori Vacuolating Toxin on Maturation and Extracellular Release of Procathepsin D and on Epidermal Growth Factor Degradation
Abstract The effect of vacuolating toxin (VacA) fromHelicobacter pylori on endosomal and lysosomal functions was studied by following procathepsin D maturation and epidermal growth factor (EGF) degradation in HeLa cells exposed to the toxin. VacA inhibited the conversion of procathepsin D (53 kDa) into both the intermediate (47 kDa) and the mature (31 kDa) form. Nonprocessed cathepsin D was partly retained inside cells and partly secreted in the extracellular medium via the constitutive secretion pathway. Intracellular degradation of EGF was also inhibited by VacA with a similar dose-response curve. VacA did not alter endocytosis, cell surface recycling, and retrograde transport from plasma membrane totrans-Golgi network and endoplasmic reticulum, as estimated by using transferrin, diphtheria toxin, and ricin as tracers. Subcellular fractionation of intoxicated cells showed that procathepsin D and nondegraded EGF accumulate in lysosomes. Measurements of intracellular acidification with fluorescein isothiocyanate-dextran revealed a partial neutralization of the lumen of endosomes and lysosomes, sufficient to account for both mistargeting of procathepsin D outside the cell and the decreased activity of lysosomal proteases
EFFECTS OF MUSIC ON SEIZURE FREQUENCY IN INSTITUTIONALIZED SUBJECTS WITH SEVERE/PROFOUND INTELLECTUAL DISABILITY AND DRUG-RESISTANT EPILEPSY
Background: Approximately one-third of patients with epilepsy continue to experience seizures despite adequate therapy with
antiepileptic drugs. Drug-resistant epilepsy is even more frequent in subjects with intellectual disability. As a result, several nonpharmacological interventions have been proposed to improve quality of life in patients with intellectual disability and drug-resistant epilepsy. A number of studies have demonstrated that music can be effective at reducing seizures and epileptiform discharges. In particular, Mozart’s sonata for two pianos in D major, K448, has been shown to decrease interictal EEG discharges and recurrence of clinical seizures in patients with intellectual disability and drug-resistant epilepsy as well. The aim of this study is to investigate the influence of Mozart\u27s music on seizure frequency in institutionalized epileptic subjects with profound/severe intellectual disability.
Subjects and methods: Twelve patients (10 males and 2 females) with a mean age of 21.6 years were randomly assigned to two groups in a cross-over design; they listened to Mozart K448 once a day for six months.
Results: A statistically significant difference was observed between the listening period and both baseline and control periods.
During the music period, none of the patients worsened in seizure frequency; one patient was seizure-free, five had a greater than 50% reduction in seizure frequency and the remaining showed minimal (N=2) or no difference (N=4). The average seizure reduction compared to the baseline was 20.5%. Our results are discussed in relation to data in the literature considering differences in protocol investigation.
Conclusions: Music may be considered a useful approach as add-on therapy in some subjects with profound intellectual
disability and drug-resistant epilepsy and can provide a new option for clinicians to consider, but further large sample, multicenter studies are needed to better understand the characteristics of responders and non-responders to this type of non-pharmacological intervention
Calsequestrins new calcium store markers of adult Zebrafish cerebellum and optic tectum
Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia
- …